Parikh Image of Pushdown Automata

Elena Gutiérrez and Pierre Ganty

Introduction

Context-free Languages (CFLs)

Pushdown Automata
(PDAs)

Context-free Grammars
(CFGs)

Introduction

Context-free Languages (CFLs)

Pushdown Automata
(PDAs)

Context-free Grammars
(CFGs)

Introduction

Context-free Languages
 (CFLs)

Pushdown Automata
(PDAs)

Context-free Grammars
(CFGs)

PDAs and CFGs

- Pushdown Automata
- Context-free Grammar

$$
S \Rightarrow a S a \Rightarrow a b S b a \Rightarrow \ldots \Rightarrow a b a a b a
$$

PDAs and CFGs

- Pushdown Automata
- Context-free Grammar

$$
S \Rightarrow a S a \Rightarrow a b S b a \Rightarrow \ldots \Rightarrow a b a a b a
$$

- PDA2CFG

PDAs and CFGs

- Pushdown Automata
- Context-free Grammar

$$
S \Rightarrow a S a \Rightarrow a b S b a \Rightarrow \ldots \Rightarrow a b a a b a
$$

- PDA2CFG

PDAs and CFGs

- Pushdown Automata
- Context-free Grammar

$$
S \Rightarrow a S a \Rightarrow a b S b a \Rightarrow \ldots \Rightarrow a b a a b a
$$

- PDA2CFG

Introduction

CFLs

PDAs
CFGs

Introduction

CFLs

Goldstine et. al.(1982): PDA2CFG is optimal

Introduction

A PUSHDOWN AUTOMATON OR A CONTEXT-FRIEE GRAMMAR-WHICHI IS MORE ECONOMICAL?****

Jonathan GOLDSTINE, John K. PRICE*** and Detief WOTSCHKE
Computer Science Department, The Pennsylvania State University, University Park, PA 16802. U.S.A.

Communicated by R. Book
Received January 1980
Revised September 1980

Abstract

For every pair of positive integers n and p, there is a language accepted by a real-time deterministic pushdown automaton with n states and p stack symbols and size $\mathbf{O}(n p)$, for which every context-free grammar needs at least $n^{2} p+1$ nonterminals if $n>1$ (or p non-terminals if $n=1$). It follows that there are context-free languages which can be recognized by pushdown automata of size $\mathrm{O}(n p)$, but which cannot be generated by context-free grammars of size smaller than $\mathrm{O}\left(n^{2} p\right)$; and that the standard construction for converting a pushdown automaton to a context-free grammar is optimal in the sense that it infinitely often produces grammars with the fewest number of nonterminals possible.

Introduction

A PUSHDOWN AUTOMATON OR A CONTEXT-FRIEE GRAMMAR-WHICH IS MORE ECONOMICAL?****

Jonathan GOLDSTINE, John K. PRICE*** and Detief WOTSCHKE
Computer Science Department, The Pennsylvania State University, University Park, PA 16802, U.S.A.
Communicated by R. Book
Received January 1980
Revised September 1980

Abstract. For every pair of positive integers n and p, there is a language accepted by a real-time deterministic nushdown antomaton with n states and n stack sumbols and size $\mathrm{O}(n n)$, for which

Abstract. For every pair of positive integers n and p, there is a language accepted by a real-time deterministic pushdown automaton with n states and p stack symbols and size $\mathrm{O}(n p)$, for which every context-free grammar needs at least $n^{2} p+1$ nonterminals if $n>1$ (or p non-terminals if

Introduction

A PUSHDOWN AUTOMATON OR A CONTEXT-FRIEE GRAMMAR-WHICH IS MORE ECONOMICAL?****

Jonathan GOLDSTINE, John K. PRICE*** and Detief WOTSCHKE
Computer Science Department, The Pennsylvania State University, University Park, PA 16802, U.S.S.A.

Communicated by R. Book
Received January 1980
Revised September 1980

Abstract. For every pair of positive integers n and p, there is a language accepted by a real-time deterministic pushdown automaton with n states and p stack symbols and size $\mathrm{O}(n p)$, for which every context-free grammar needs at least $n^{2} p+1$ nonterminals if $n>1$ (or p non-terminals if $n=1$). It follows that there are context-free languages which can be recognized by pushdown

Notation. For positive integers n and p, let $M_{n p}$ be the PDA

$$
M_{n p}=\left(Q_{n}, \Sigma_{n p}, \Gamma_{p}, \delta_{n p}, q_{1}, Z_{1}, \emptyset\right)
$$

where

$$
\begin{aligned}
& Q_{n}=\left\{q_{1}, \ldots, q_{n}\right\}, \quad \Gamma_{p}=\left\{Z_{1}, \ldots, Z_{p}\right\}, \\
& \Sigma_{n p}=\left\{s_{i j}, r_{i j}, u, d \mid 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant p\right\},
\end{aligned}
$$

PDA2CFG is also optimal* in the unary case

Lower bound

Thm: There is a family of unary PDAs with n states and p stack symbols for which every equivalent CFG has $\Omega\left(n^{2}(p-2 n-4)\right)$ variables.

Family $\mathbf{P (n , k)}$

- n states
- $p=2 n+k+4$ stack symbols
- $\Sigma=\{a\}$

PDA2CFG is also optimal* in the unary case

Set of actions of $P(n, k)$:

$$
\begin{array}{rlr}
\left(q_{0}, a, S\right) & \hookrightarrow\left(q_{0}, X_{k} r_{0}\right) & \\
\left(q_{i}, a, X_{j}\right) & \hookrightarrow\left(q_{i}, X_{j-1} r_{m} s_{i} X_{j-1} r_{m}\right) \forall i, m \in\{0, \ldots, n-1\}, \forall j \in\{1, \ldots, k\}, \\
\left(q_{j}, a, s_{i}\right) & \hookrightarrow\left(q_{i}, \varepsilon\right) & \forall i, j \in\{0, \ldots, n-1\}, \\
\left(q_{i}, a, r_{i}\right) & \hookrightarrow\left(q_{i}, \varepsilon\right) & \forall i \in\{0, \ldots, n-1\}, \\
\left(q_{i}, a, X_{0}\right) & \hookrightarrow\left(q_{i}, X_{k} \star\right) & \forall i \in\{0, \ldots, n-1\}, \\
\left(q_{i}, a, X_{0}\right) & \hookrightarrow\left(q_{i+1}, X_{k} \$\right) & \forall i \in\{0, \ldots, n-2\}, \\
\left(q_{i}, a, \star\right) & \hookrightarrow\left(q_{i-1}, \varepsilon\right) & \forall i \in\{1, \ldots, n-1\}, \\
\left(q_{0}, a, \$\right) & \hookrightarrow\left(q_{n-1}, \varepsilon\right) & \\
\left(q_{n-1}, a, X_{0}\right) & \hookrightarrow\left(q_{n-1}, \varepsilon\right) &
\end{array}
$$

PDA2CFG is also optimal* in the unary case

Properties of $P(n, k)$:

- $\quad P$ has only one accepting run

$$
L(P)=\left\{a^{\ell}\right\} \text { with } \ell \geq 2^{n^{2} k}
$$

PDA2CFG is also optimal* in the unary case

Thm: There is a family of unary PDAs with n states and p stack symbols for which every equivalent CFG has $\Omega\left(n^{2}(p-2 n-4)\right)$ variables.

PDA2CFG is also optimal* in the unary case

Thm: There is a family of unary PDAs with n states and p stack symbols for which every equivalent CFG has $\Omega\left(n^{2}(p-2 n-4)\right)$ variables.

Proof:

- Find G s.t.: $L(G)=L(P)=\left\{a^{\ell}\right\}$ with $\ell \geq 2^{n^{2} k}$.

PDA2CFG is also optimal* in the unary case

Thm: There is a family of unary PDAs with n states and p stack symbols for which every equivalent CFG has $\Omega\left(n^{2}(p-2 n-4)\right)$ variables.

Proof:

- Find G s.t.: $L(G)=L(P)=\left\{a^{\ell}\right\}$ with $\ell \geq 2^{n^{2} k}$.

■ [Charikar et. al., 2005]: The smallest CFG that generates exactly one word of length ℓ has $\Omega(\log (\ell))$ variables.

PDA2CFG is also optimal* in the unary case

Thm: There is a family of unary PDAs with n states and p stack symbols for which every equivalent CFG has $\Omega\left(n^{2}(p-2 n-4)\right)$ variables.

Proof:

- Find G s.t.: $L(G)=L(P)=\left\{a^{\ell}\right\}$ with $\ell \geq 2^{n^{2} k}$.

■ [Charikar et. al., 2005]: The smallest CFG that generates exactly one word of length ℓ has $\Omega(\log (\ell))$ variables.

- Then G has $\Omega\left(\log \left(2^{n^{2} k}\right)\right)=\Omega\left(n^{2} k\right)$ variables.

PDA2CFG is also optimal* in the unary case

Thm: There is a family of unary PDAs with n states and p stack symbols for which every equivalent CFG has $\Omega\left(n^{2}(p-2 n-4)\right)$ variables.

Proof:

- Find G s.t.: $L(G)=L(P)=\left\{a^{\ell}\right\}$ with $\ell \geq 2^{n^{2} k}$.

■ [Charikar et. al., 2005]: The smallest CFG that generates exactly one word of length ℓ has $\Omega(\log (\ell))$ variables.

- Then G has $\Omega\left(\log \left(2^{n^{2} k}\right)\right)=\Omega\left(n^{2} k\right)$ variables.

■ As $k=p-2 n-4, G$ has $\Omega\left(n^{2}(p-2 n-4)\right)$ variables.

PDA2CFG is also optimal* in the unary case

PDA2CFG is also optimal* in the unary case

PDA2CFG is also optimal* in the unary case

PDA2CFG is optimal

$$
|\Sigma|>1
$$

$$
|\Sigma|=1
$$

PDA2CFG is also optimal* in the unary case

PDA2CFG is optimal

$$
\begin{aligned}
& |\Sigma|>1 \\
& |\Sigma|=1
\end{aligned}
$$

CFLs

PDAs
CFGs

CFLs

CFLs

Parikh equivalence

Parikh-equivalent words

$a b b$

bab

Parikh-equivalent languages

$$
\begin{aligned}
& \{a b b, a b\} \\
& \{b a b, b a\}
\end{aligned}
$$

Parikh equivalence

Parikh-equivalent words

Parikh-equivalent languages

$$
\begin{aligned}
& \{a b b, a b\} \\
& \{b a b, b a\}
\end{aligned}
$$

Parikh equivalence

Parikh-equivalent words

$a b b \approx b a b$

Parikh-equivalent languages

$$
\begin{aligned}
& \{a b b, a b\} \\
& \{b a b, b a\}
\end{aligned}
$$

Parikh equivalence

Parikh-equivalent words

$a b b \approx b a b$

Parikh-equivalent languages

$$
\begin{gathered}
\{a b b, a b\} \\
\times 1 \times X \\
\{b a b, b a\}
\end{gathered}
$$

PDA2CFG for Parikh equivalence

Idea:
Find F such that:
For all $L \in F$: every CFG G with $L(G) \approx L$ needs $\Omega\left(n^{2} p\right)$ variables

PDA2CFG for Parikh equivalence

Idea:
Find F such that:
For all $L \in F$: every CFG G with $L(G) \approx L$ needs $\Omega\left(n^{2} p\right)$ variables

$$
\begin{aligned}
& \{a b b, a b\} \\
& \{a b b, a b\}
\end{aligned}
$$

$$
\begin{aligned}
& \{a b b, a b\} \\
& \{a b b, a b\}
\end{aligned}
$$

$$
L=L^{\prime} \Rightarrow L \approx L^{\prime}
$$

$\{a b b, a b\}$ $\{a b b, a b\}$

$$
L=L^{\prime} \Rightarrow L \approx L^{\prime}
$$

$\{a b b, a b\}$ $\{a b b, a b\}$

$$
L=L^{\prime} \Rightarrow L \approx L^{\prime}
$$

$$
\nLeftarrow
$$

- If $|\Sigma|=1$:
aaa
- If $|\Sigma|=1$:
aaa
àà
- $\operatorname{If}|\Sigma|=1$:
$a a a$
àà

- If $|\Sigma|=1$:

If $|\Sigma|=1$:

$$
L=L^{\prime} \Longleftrightarrow L \approx L^{\prime}
$$

Find F with $|\Sigma|=1$ such that:
For all $L \in F$: every CFG G with $L(G) \approx L$ needs $\Omega\left(n^{2} p\right)$ variables

For all $L \in F$: every CFG G with $L(G) \approx L$ needs $\Omega\left(n^{2} p\right)$ variables

PDA2CFG is optimal* for Parikh equivalence

PDA2CFG is optimal

$$
\begin{aligned}
& |\Sigma|>1 \\
& \hline|\Sigma|=1 \\
& \hline \text { Parikh equivalence }
\end{aligned}
$$

2-step procedure for Parikh-equivalent FSA

Thm: Every CFL is Parikh-equivalent to some regular language

Finite State Automata (FSAs)

2-step procedure for Parikh-equivalent FSA

Thm: Every CFL is Parikh-equivalent to some regular language
Regular Languages

FSAs

2-step procedure for Parikh-equivalent FSA

Upper bound

2-step procedure for Parikh-equivalent FSA

Upper bound

2-step procedure for Parikh-equivalent FSA

Upper bound

2-step procedure for Parikh-equivalent FSA

Upper bound

Thm: Given a PDA with n states and p s.s., there is a Parikh-equivalent FSA with $\mathcal{O}\left(4^{n^{2} p}\right)$ states.

2-step procedure for Parikh-equivalent FSA

Lower bound

- Using the family $P(n, k)$
- $L(P)=\left\{a^{\ell}\right\}$ with $\ell \geq 2^{n^{2} k}$

Thm: There is a family of unary PDAs with n states and p stack symbols for which every equivalent FSA needs at least $2^{n^{2}(p-2 n-4)}+1$ states.

2-step procedure for Parikh-equivalent FSA

Conclusions

- PDA2CFG is also optimal in the unary case
- PDA2CFG is optimal for Parikh-equivalence
- PDA2CFG-based procedure for Parikh-equivalent FSA is close to optimal

Conclusions

- PDA2CFG is also optimal in the unary case
- PDA2CFG is optimal for Parikh-equivalence
- PDA2CFG-based procedure for Parikh-equivalent FSA is close to optimal

27

