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Abstract

A logic program is a set of first-order logic sentences namely Horn clauses that
define relations between objects. The meaning of a program is the result of com-
puting the consequences of the program. An atom is an expression of the form
p(t1, ...tm) where p is a predicate symbol and each ti is either a variable or a con-
stant. A Horn clause is a disjunction of literals (an atom or its negation) and can
be represented in terms of a logic implication (→). We write Horn clauses in its
reverse implication form, i.e., we use a right-to-left implication (←). Thus, the
right side of the reverse implication is the body of the Horn clause and the left
side is the head. The body of a Horn clause is a (possibly empty) conjunction of
atoms called subgoals. Linear clauses are clauses containing zero or one subgoal.
Linear programs are programs with at least one linear clause, otherwise they are
non-linear. Formal verification is the use of logic formal methods to prove the cor-
rectness of programs. Such a logic formal method is, for instance, translating a
program into a logic program and check its satisfiability, i.e., the existence of an
interpretation that satisfies all the clauses in the program. Such an interpretation
is called a solution of the program. Model checkers and solvers are the tools dedi-
cated to check satisfiability of programs. Most of them are applied to non-linear
programs but there are notable exceptions. This thesis presents a procedure that
transforms non-linear programs from a syntactic class of programs into linear
programs preserving their meaning. This syntactic class of programs is the set
of dimension bounded programs. We are restricted to this set of programs because
they are guaranteed to be linearisable, i.e, there exists an algorithm that trans-
forms these programs into linear that terminates and preserves their meaning.
We prove that our procedure terminates and also preserves the meaning between
the initial dimension bounded program and the linearised program. We also de-
scribe the notion of dimension of a program and its interpretation. We define the
set of rules, that applied to a set of Horn clauses P , gives as a result a dimension
bounded program P [k], given the value of the dimension k ∈ N. Finally, we will
see in which cases we can conclude if a non-linear program P is satisfiable or
not depending on the satisfiability of the transformed program, i.e., the program
that results from applying the linearisation procedure to P [k] for a given k ∈ N.
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Chapter 1

Introduction

1.1 Logic and Computation

Between the late 19th century and the early 20th century, one of the focuses of
mathematical work was the study of the foundations of mathematics. This nat-
urally led to the development of a new subfield of mathematics, Mathematical
Logic.

Mathematicians began to search for an axiomatic framework to formalise a
large number of areas such as set theory, geometry and arithmetic, whose bases
became unstable because of the discovery of the set-theoretic paradoxes. The
aim was to build a formal system where every mathematical truth could be for-
mulated and proven in terms of a finite number of rules and axioms (or axiom
schemes).

Furthermore, David Hilbert suggested to reduce all the existing theories to a
complete and finite set of axioms and then prove the consistence of those axioms.
Unfortunately, Kurt Gödel proved in his Incompleteness theorem (1931) that there
were limits to what could be proved and disproved with a formal system. These
results together with the question proposed by David Hilbert in 1928, known
as Hilbert’s Entscheidungsproblem – the existence or not of an abstract machine or
algorithm able to decide whether a statement of a first-order logic is true or false,
depending on whether the statement is valid in every structure that satisfies the
axioms – motivated the work of the English mathematician Alan Turing and the
American logician Alonzo Church.

Turing proved that there was no solution to the Entscheidungsproblem and for-
malised the concept of these abstract machines as hypothetical and simple mathe-
matical models able to carry out any mathematical computation. This, together
with the work of Church gave place to an important conjecture known as the
Church-Turing thesis, which esentially affirms that everything that is computable
can be carried out by those abstract machines, also called Turing machines. Their
work constituted the foundations of computation theory, and opened the door to
the development of different models of computation using mathematical logic.

As a result of the work of a number of theorists along the 20th century to-
gether with the development of the first general purpose computers, compu-
tation theory has experimented a specialisation on a large number of different
areas.

In particular, automated reasoning attempts to achieve the techniques to teach
computers how to reason completely, or near completely and automatically. This
is the base of fields such as automated theorem proving, logic programming and
formal verification.
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Formal verification refers to the use of formal methods to prove the correctness
of a certain algorithm or program according to a given specification of its be-
haviour. Such a formal method is, for instance, translating a program written in
a certain programming language into a logic program (see section 1.2) and check
if there exists a solution (see Definition 2.2.8) for the logic program, i.e., if it is
satisifiable.

Logic programming plays also an important role as a tool that provides enough
expressive power to formalise the behaviour of programs, to automatise rea-
sonings and to prove certain properties of programs.

1.2 Logic Programming

Logic programming appears as point of encounter between computation and
logic. A logic program consists of a set of first-order logic sentences which can be
either facts or rules defining relations between objects.

A computation of a logic program is a deduction of consequences of the pro-
gram. This set of consequences is the meaning of the program.

Logic programming does not deal with specific computer languages in the
sense that it is derived from an abstract model, which has no direct relation to one
machine model or another. In its purest form, logic programming suggests that
instead of giving explicit instructions to solve a problem, it is preferable to state
explicitly the knowledge about the problem and the sufficient assumptions to
solve it. The program can be executed by providing it with a problem, formalised
as a logical statement to be proved called goal statement. Executing a program
means proving the goal statement, given the assumptions in the logic program.

An example of a goal statement is: "order the list [3,1,2] to obtain the object
X". The mechanism used to prove the goal statement is constructive in the sense
that if succesful, it provides the identity of the unknown individuals mentioned
in the goal statement – the output of the computation. In this case, assuming we
have defined the appropiate axioms that describe the sort relation, the output of
the computation would be X =[1,2,3].

The expressive power of logic programming relies on particular first-order
sentences called Horn clauses. Therefore, logic programs are a set of Horn clauses,
either rules or facts, defining relations between objects. This set of Horn clauses
are the axioms of the logic program.

Let us consider the following rule, which is a Horn clause, and its interpreta-
tion within a program:

H if B1 and B2 and B3 and ... and Bn.

can be interpreted as follows: To solve (execute) H, solve (execute) B1, and
B2 and ... and Bn.

H is said to be the head of the rule, while B1... and Bn are called subgoals and
they form the body of the rule.

Facts are also part of logic programs, and are also Horn clauses:

H .

equivalent to
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H if true.

and can be interpreted as: H is true in our logic program.

1.3 Motivation

The aim of this thesis is to develop a linearisation procedure which transforms a set
of non-linear Horn clauses into a set of linear clauses preserving their meaning. A
Horn clause is non-linear if it contains more than one subgoal in the body. A Horn
clause is linear if it contains zero or one subgoal in the body.

On the other hand, a model checker or solver is a verification tool that auto-
matically checks the correctness of a program. We are interested in checking the
satisfiability of a set of non-linear Horn clauses using a linear solver for Horn
clauses. The linearisation procedure transforms a set of non-linear Horn clauses
that can be linearised into a linear set of Horn clauses that can be solved using a
linear Horn clause solver. At the end of the day, we are able to solve non-linear
sets of Horn clauses using a solver for linear Horn clauses.

In section 2, we shall give a collection of definitions to introduce the subject.
In particular, we shall describe the class of piecewise linear programs. These pro-
grams are proved to be linearisable, i.e., they can be transformed into linear pro-
grams by means of an algorithm that preserves their meaning and terminates. In
section 3, we shall present the concept of derivation tree associated to a program
and the dimension of a derivation tree. Also, we shall describe a collection of
transformations that changes a set of Horn clauses into a new set whose deriva-
tion trees have bounded dimension. This will lead us to the notion of a dimension
bounded set of Horn clauses as an under-approximation of a given program. We will
see that dimension bounded programs are contained in the class of piecewise
linear programs and therefore, dimension bounded programs are linearisable.
In section 4, we shall give a definition of a linearisation procedure applied to k-
dimension-bounded sets of Horn clauses, for a given natural value k.

The starting point of this work is the three internships I have carried out
during the summers of 2013, 2014 and 2015 in the research institute IMDEA Soft-
ware. However, this thesis goes beyond that work, expanding it with original
research.
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Chapter 2

Preliminaries

2.1 Horn clauses

Definition 2.1.1. An atom is an expresion of the form p(t1, ..., tm) where p is a predi-
cate symbol of arity m and ti is a term, i.e., a variable or a constant, with 1 ≤ i ≤ m.

In Example 2.2.4, fib(0,0), fib(1,1) and fib(X,Y) are examples of atoms. The
three of them have the same predicate, fib, of arity 2. Atoms fib(0,0) and fib(1,1)
have constants as arguments while fib(X,Y) has a vector of 2 variables: X and Y.

Definition 2.1.2. A ground atom is an atom p(t1, ..., tm) where ti is a constant, with
1 ≤ i ≤ m.

In Example 2.2.4, fib(0,0) and fib(1,1) are ground atoms.

Definition 2.1.3. A literal is an atom or its negation.

Positive literals are atoms and we use them interchangeably in this thesis. In
Example 2.2.4, fib(0,0), fib(1,1) and fib(X,Y) are examples of positive literals.

Definition 2.1.4. A clause is a disjunction of literals.

In practice, we restrict the set of all clauses to the set of Horn clauses, named
after the logician Alfred Horn. These are clauses with at most one positive literal.

Definition 2.1.5. A Horn clause is a clause with at most one positive, i.e., unnegated,
literal, when written in a disjunctive form.

Let h, b1, ..., bn be predicate symbols of arity m. We write Vj to denote a (pos-
sibly empty) set of variables and we write Xj to denote the tuple of variables
consisting of all variables in Vj . Let X,X1, ..., Xn be the tuples of variables in
V, V1, ..., Vn respectively, with V ⊆ V1 ∪ ... ∪ Vn.

• If n > 0 then ¬b1(X1) ∨ ... ∨ ¬bn(Xn) ∨ h(X) is a definite clause or rule. It
is common to write definite clauses in its implication form

b1(X1) ∧ ... ∧ bn(Xn)→ h(X). (2.1)

All variables in a clause are implicitly universally quantified with scope the
entire clause. Thus, clause 2.1 stands for:

∀X∀X1...∀Xn (b1(X1) ∧ ... ∧ bn(Xn)→ h(X)). (2.2)

We usually write Horn clauses in its reverse form:

h(X)← b1(X1) ∧ ... ∧ bn(Xn). (2.3)
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We refer to the right hand side of ← as the body and the left hand side as
the head of the Horn clause. In this case, (b1(X1) ∧ ... ∧ bn(Xn)) is the body
while h(X) is the head of the clause.

In Example 2.2.4, clause c3. is a rule.

• If n = 0 then h(X) is called a fact. It is logically equivalent to

∀X h(X)

and to
∀X (h(X)← true).

In Example 2.2.4, clauses c1. and c2. are facts.

• If no positive literals occur in the clause, ¬b1(X1) ∨ ... ∨ ¬bn(Xn) is a goal
clause. It is logically equivalent to

∀X (false← b1(X1) ∧ ... ∧ bn(Xn)),

and to
(¬∃X (b1(X1) ∧ ... ∧ bn(Xn))).

In Example 2.2.4, clause c4. is a goal clause.

We will use "," instead of "∧" to separate the atoms in the body of a clause.

2.2 Constrained Logic Programs or CLPs

Definition 2.2.1. A constraint over the set of variables V0 is a conjunction of linear
equalities and inequalities over the variables in V0 and the integers.

Given a set of variables V0 and the tuple of variables X0 consisting of all variables in
V0, we will denote a constraint over the variables in V0 by C(X0).

In general we will use the integers as our constraint theory. Thus, a constraint
represents the set of integers that verifies its linear equalities and inequalities.
The negation of a constraint, ¬C(X0), represents the complementary set ofC(X0).

In Example 2.2.4, clauses c3. and c4. contain constraints in their bodies. In
clause c3. the constraint is X > 1, X2 = X - 2, X1 = X - 1, Y = Y1 + Y2, while in
clause c4. the constraint is X > 5, X > Y.

Definition 2.2.2. A constrained Horn clause is a Horn clause of the form

p(X)← C(X0), p1(X1), p2(X2), ..., pn(Xn), n ≥ 0

where p1, ..., pn, p are predicate symbols; V, V0, V1, ..., Vn are (possibly empty) sets of
variables with V ⊆ V0 ∪ V1 ∪ ... ∪ Vn ; X,X1, ..., Xn are the tuples of variables consist-
ing of all variables in the sets V, V1, ..., Vn respectively; and C(X0) is a constraint over
the variables in V0.

In Example 2.2.4, every clause is a constrained Horn clause. For clauses c1.
and c2., n = 0 while for clauses c3. and c4., n > 0. In clause c3., V is the set of
variables {X, Y}, V0 is the set {X, X2, X1, Y, Y1, Y2}, V1 is the set {X2, Y2} and V2
is the set {X1, Y1}.
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Definition 2.2.3. A constrained logic program or CLP is a finite set of constrained
Horn clauses.

We will refer to CLPs simply as programs and constrained Horn clauses as
clauses.

Example 2.2.4. Example of CLP

c1. fib(0,0).
c2. fib(1,1).
c3. fib(X,Y)← X > 1, X2 = X - 2, fib(X2, Y2), X1 = X - 1, fib(X1, Y1), Y = Y1 + Y2.
c4. false← X > 5, fib(X,Y), X > Y.

Example 2.2.4 is a CLP that defines a Fibonacci function. In this case, fib(n,m)
means that m is the nth element in the Fibonacci sequence.

Clauses c1. and c2. express that the element in position 0 and position 1 in
the Fibonacci sequence are 0 and 1, respectively. Clause c3. expresses that every
other element in the Fibonacci sequence in a position greater than 1 is computed
adding the values in the previous two positions. Clause c4. expresses that every
element in the Fibonacci sequence in a position greater than 5, is not less than the
position itself.

2.2.1 Meaning and equivalence between CLPs

Definition 2.2.5. The Herbrand Universe of a CLP is the set of all ground atoms that
can be formed using the constant symbols that appear in P .

In Example 2.2.4, the set of constant symbols is Z. Thus, the Herbrand Uni-
verse of this program is {fib(a,b) | a,b ∈ Z}.

Definition 2.2.6. An interpretation of a CLP is a set of ground atoms whose predicate
symbols occur in the program and whose arguments are in the Herbrand Universe of the
program.

An interpretation for the CLP in Example 2.2.4 is {fib(-1,-1), fib(0,0)}.

Definition 2.2.7. A Herbrand model of a CLP is an interpretation that satisfies all
clauses in the program.

A Herbrand model for the CLP in Example 2.2.4 is {fib(0,0), fib(1,1)}. The
reader can check that both ground atoms satisfy all the clauses in the program.

Definition 2.2.8. A solution of a CLP P , is a Herbrand model of P .

In Example 2.2.4, a solution for the CLP given is {fib(0,0), fib(1,1), fib(2,1),
fib(3,2), fib(4,3), fib(5,5)}. The reader can check that this is an interpretation that
satisfies every clause in the CLP.

Definition 2.2.9. The meaning of a CLP P , denoted byM(P ), is the set of all solutions
of P .

We say that two programs are equivalent if they have the same meaning. The
meaning of the program in Example 2.2.4 is {fib(a,b) | a,b∈ Z and b is the ath

element in the Fibonacci sequence}.

Definition 2.2.10. The meaning of a CLP P , restricted to the predicates in S, is
defined as MS(P ) =M(P ) ∩ {A | A is a ground atom whose predicate is in S}.
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Example 2.2.11. Example of the meaning of a CLP restricted to a set of predicates

Let P be the following CLP:

c1. triangular(X)← Y1 ≥ 0, Y2 ≥ 0, Y2 = Y1 + 1, X = (Y1*Y2)/2.
c2. square(X)← X≥ 0.
c3. square(X) ← Y1 ≥ 0, Y2 ≥ 0, Y2 = Y1+1, triangular(Y1), triangular(Y2),
X = Y1 + Y2.

where triangular(X) means that X is a triangular number (a number that can be
represented in the form of a triangular grid of points where the first row contains
a single point and each subsequent row contains one more element than the pre-
vious one) and square(X) means that X is a square number (a number which
is equal to the product of a natural number by itself). This program computes
all the square numbers relying on the property that the sum of two consecutive
triangular numbers is a square number.

Let S be the set of predicates {square}, the meaning of this CLP restricted to
S is MS(P ) ={square(a) | a = b2 and a, b ∈ N}.

Definition 2.2.12. (Meaning preservation) Let P1 be a program and pred(P1) the
set of predicates occurring in P1. We say that a set of transformations applied to P1

that gives as a result program P2 preserves the meaning between them if M(P1) =
Mpred(P1)(P2).

As we shall see in Chapter 4 the introduction of new clauses that define new
predicates is a step of the linearisation procedure here presented. Thus, when
we say that the linearisation procedure preserves the meaning between the initial
non-linear program P and the linearised programLP , we mean that the meaning
of P is equal to the meaning of LP restricted to the predicates ocurring in P . We
will say that the procedure preserves the meaning between the initial and the
linearised program or that it preserves the equivalence between them.

2.3 Linear and piecewise linear CLPs

2.3.1 Linear CLPs

Definition 2.3.1. A subgoal is an atom appearing in the body of a clause.

In Example 2.2.4, the subgoals of clause c3. are fib(X2,Y2) and fib(X1,Y1).

Definition 2.3.2. Non-linear clauses are those containing more than one subgoal.
Otherwise, they are called linear.

In Example 2.2.4, only clause c3. is non-linear, as it has 2 subgoals in its body.

Definition 2.3.3. A linear CLP is a program where every clause is linear.

If one or more non-linear clauses occur in the program, it is non-linear.
CLP in Example 2.2.4 is non-linear as c3. is non-linear.

Our aim is to linearise non-linear programs, i.e, transform a set of clauses
which include at least one or more non-linear clauses into a set of linear clauses
by means of a linearisation procedure. A natural question is: Can we linearise any
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non-linear program so that, every solution for the linear program is also a solu-
tion for the original, and viceversa? In other words, is there, for any non-linear
program, an equivalent linear program? In [1] it is proven that the answer to this
question is negative. However, in [1] it is also proved that there exists a syn-
tactic class of non-linear programs, namely the piecewise linear programs, where
every program can always be transformed into an equivalent linear program by
means of a procedure that terminates and preserves the equivalence between
them. In fact, the procedure presented here deals with a syntactic class of pro-
grams, namely dimension bounded programs, which is contained in the class of
piecewise linear programs as it will be shown in the next chapter. By describing
this procedure we will prove constructively that non-linear dimension bounded
programs are also linearisable.

2.3.2 Piecewise linear CLPs

Example 2.3.4. Example of CLP

c1. arc(1,2).
c2. arc(2,3).
c3. path(X,Y)← arc(X,Y).
c4. path(X,Y)← path(X,Z),path(Z,Y).

Example 2.3.4 shows a CLP that describes the relation path between two points
by means of the relation arc. Clauses c1. and c2. state that there is an arc between
points 1 and 2, and between points 2 and 3. Clause c3. states that there exists a
path between 2 given points X and Y if there exists an arc between them. Clause
4. states that there exists a path bewteen 2 points if there exists a path between
the first one and an intermediate point, and a path bewteen the intermediate
point and the second one. We will use Example 2.3.4 to illustrate the following
definitions.

Definition 2.3.5. Dependence graph of a CLP P . Let P be a CLP. The dependence
graph of P is the directed graph, where loops are allowed but multiple edges are not,
constructed as follows:

For each predicate symbol p appearing in P , there is exactly one node representing p.
For each clause c in P whose head is an atom with predicate p, and for each predicate q of
a subgoal in c, there is exactly one directed edge from p to q. If there is already a directed
edge from p to q, no new directed edge from p to q is added.

The node in the dependence graph of P , representing the predicate symbol
p, will be named as node p.

Figure 2.1 shows the dependence graph of the CLP in Example 2.3.4. As there
are two different predicates in the CLP, the graph has two nodes. There exists an
edge from node path to node arc because the head of clause c1. is an atom whose
predicate is path and arc is the predicate ocurring in its subgoal. There exists an
edge from node path to itself because the head of clause c2. is an atom whose
predicate is path, and the predicate of the first subgoal ocurring in the body of c2.
is also path. Note that the predicate of the second subgoal ocurring in the body
of c2. is path as well. However, no new edges from node path to itself are added.

Definition 2.3.6. Strongly connected components (SCCs) of the dependence graph.
Given two subgraphsG1 andG2 of the dependence graph, we say thatG1<G2 under the
inclusion ordering if and only if the set of nodes of G1 is contained in the set of nodes of
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path arc

FIGURE 2.1: Dependence graph of CLP in Example 2.3.4

G2 and the set of edges of G1 is contained in the set of edges of G2.
The strongly connected components of the dependence graph are the maximal subgraphs
of the dependence graph (w.r.t. the inclusion ordering) such that every node is reachable
(there exists a non-empty sequence of edges) from all the nodes in the subgraph.

Figure 2.2 shows an SCC of the dependence graph of the CLP in Example
2.3.4. Node path is itself an SCC because it is reachable from itself.

This is the only SCC of the dependence graph of CLP in Example 2.3.4. Node
arc is not an SCC as it is not reachable from itself. The union of nodes path and
arc is not an SCC either, because node path cannot be reached from node arc and,
again, node arc can not be reached from itself.

path

FIGURE 2.2: The SCC of the dependence graph in Figure 2.1

Definition 2.3.7. A recursive clause is a clause that has a subgoal whose predicate is
represented by a node in the same SCC as the node representing the predicate in its head.

Clause c2. in Example 2.3.4 is a recursive clause since predicate path, appear-
ing in both subgoals of its body, belongs to the same SCC as the predicate in its
head (which is also path).

Definition 2.3.8. A recursive subgoal in a recursive clause is a subgoal in the same
SCC as the head of the clause. Otherwise, it is called a non-recursive subgoal.

In the recursive clause c2. in Example 2.3.4, both subgoals in its body are
recursive.

Definition 2.3.9. A piecewise linear program is a program P where every clause has
at most one recursive subgoal.

It is easy to see that every linear program is piecewise linear, while piecewise
linear programs are not guaranteed to be linear in general.

The CLP shown in Example 2.3.4 is not piecewise linear as clause c2. has two
recursive subgoals.

Example 2.3.10. Example of CLP
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c1. arc(1,2).
c2. arc(2,3).
c3. path(X,Y)← arc(X,Y).
c4. path(X,Y)← arc(X,Z),path(Z,Y).

The CLP shown in Example 2.3.10 is piecewise linear as clause c3. has no
recursive subgoals and clause c4. has exactly one recursive subgoal.
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Chapter 3

Dimension bounded sets of Horn
clauses

3.1 Preliminaries

In this section we will introduce the notions of unification, most general unifier and
most specific generalisation.

Definition 3.1.1. Let Q be a (non-empty) conjunction of atoms and constraints, V1 the
set of all the variables ocurring in Q, V2 a set of variables and C a set of constants. A
substitution for Q is a total function σ : V1 → V2 ∪ C extended in the natural way to
conjuctions of atoms and constraints. The result of the substitution is an instance of the
original conjunction of atoms and constraints.

Example 3.1.2. Example of substitution

Let σ = {X 7→ Z, Y 7→ 0, W 7→ 1} be a substitution. Given the conjunction
(fib(X,Y), W≥ 0, fib(W,1)) then:
(fib(X,Y), W≥ 0, fib(W,1))σ = ((fib(X,Y))σ, (W≥ 0)σ, (fib(W,1))σ) =
(fib((X)σ,(Y)σ), (W)σ≥ 0, fib((W)σ,1) = (fib(Z,0), 1≥ 0, fib(1,1)).

Definition 3.1.3. Given the (non-empty) conjunctions of atoms and constraints D and
D′, D′ unifies with D if there exists a substitution σ such that D′σ = D.

We say thatD′ is more general than, or subsumesD; and thatD is unifiable with,
or more special than D′.

We call σ the unifier of D (w.r.t. D′).

Example 3.1.4. Example of unifiers of a given atom

Given the atom D′ = path(X,X):

1. D = path(1,1) is unifiable with D′ as the substitution σ = {X 7→ 1} verifies
D′σ = D.

2. D = path(X,Y) is not unifiable with D′.
σ = {X 7→ X, X 7→ Y} is not a substitution since it is not function. In fact, it
does not exist such a function σ that verifies D′σ = D.

Definition 3.1.5. The most general unifier (up to variable renaming) of a given con-
junction of atoms and constraints D is the unifier σ, with D1 σ = D, such that if there
exists another unifier σ′, with D2 σ

′ = D then D1 subsumes D2, where D1 and D2 are
conjunctions of atoms and constraints verifying the equalities.
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Example 3.1.6. Example of the most general unifier of a given atom

The most general unifier of atom D = path(1,1) is σ = {X 7→ 1, Y 7→ 1} with
(path(X,Y))σ = path(1,1).

If we consider the unifier σ′ = {X 7→ 1} with (path(X,X))σ′ = path(1,1) then
the reader can check that path(X,Y) subsumes path(X,X).

Since it will be used in future sections, we give the notion of the most specific
generalisation. Informally, the most specific generalisation (msg) of two terms is a
term that retains the information common to both terms, introducing new varia-
bles in case of conflict. This notion can be extended to atoms and conjuctions of
atoms. Further details about an algorithm that computes the most specific gene-
ralisation of a set of expression is given in [4]. The following examples illustrate
its use.

Example 3.1.7. Examples of use of the most specific generalisation

Given the constants a and b and the variables X , Y , Z, U , V , W , Q, R and T .

1. msg(a,a) = a.

2. msg(a,b) = X .

3. msg(X ,a) = X .

4. msg(X ,X) = X .

5. msg(X ,Y ) = Z. Note that a new variable, Z, is introduced because neither
term (X or Y) is more general than the other.

6. Given the atoms A1 = p(X,Y ) and A2 = p(Z, a), msg(A1,A2) = p(U ,V ). We
only compute the msg of atoms with the same predicate symbol.

7. Given A1 = (p(X ,Y ),p(Y ,Z)) and A2 = (p(U ,V ),p(V ,W )) two conjunctions of
atoms, msg(A1,A2) = (p(Q,R),p(R,T )).

3.2 Derivation tree and tree dimension

Definition 3.2.1. Derivation step. Given a program P and an atom B, a derivation
step at atom B consists in selecting a clause cn in P such that its head is unifiable with
B. Then unfold w.r.t. atom B using clause cn (see Definition 4.2.1). A derivation step
can be performed if there exists such a clause cn in the program whose head is unifiable
with B, and if the resulting conjunction of literals and constraints is satisfiable (i.e., the
unfolding is feasible). Otherwise, a fail derivation is produced.

The result of performing a derivation step at an atom B is a derivation word.
Each derivation step produces a new derivation word.

Definition 3.2.2. A labeled tree c(t1, ..., tk) (k ≥ 0) is a tree such that c is the label of
the root and t1, ..., tk are labeled trees corresponding to the children of the root.

Definition 3.2.3. A derivation tree of a CLP is a labeled tree c(t1, ..., tk) where every
node represents a clause from the program and verifies the following properties:
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1. Each node in the tree represents the clause in the program used to perform each
derivation step. Thus, given an atom B, the root of the tree represents the clause
in the program used to perform the first derivation step at B.

2. The root of the tree is denoted by label c.

3. Each child node is denoted by cn, where cn is the clause used to perform the corre-
sponding derivation step.

4. Leaf nodes represent clauses with no atoms in their bodies (i.e., facts).

Figure 3.1 shows a derivation tree of the CLP shown in Example 2.2.4. This
tree shows in which clause the computation starts, in this case clause c3. It also
describes which clauses of the CLP are used in each derivation step from the
root, in this case clauses c2, c3, c1 and c2, assuming a depth-first traversal of the
derivation tree where the left nodes are visisted before the right nodes.

c3

c2 c3

c1 c2

FIGURE 3.1: A derivation tree of the Fibonacci program in Exam-
ple 2.2.4.

The reader can observe that the number of derivation trees from a given CLP
can be infinite.

Definition 3.2.4. Dimension of a derivation tree. Given a labeled tree t =c (t1,...,tk),
the dimension of t, denoted by dim(t), is defined as follows:

dim(t) =


0 if k = 0,

maxi∈{1,...,k}dim(ti) if there is a unique maximum,
maxi∈{1,...,k}dim(ti) + 1 otherwise

Note that this definition is not circular but recursive. A derivation tree is al-
ways finite and, therefore, the function dim visits recursively every subtree from
the root until the base case (k = 0). This is a subtree with no child nodes, i.e., a
leaf. A leaf has dimension 0. The rest of the dimension values of the subtrees are
calculated according to the recursive definition of dim.

Derivation trees which are a list of nodes, i.e., each node of the tree has at
most one child node, have dimension 0 and correspond to linear programs, while
complete binary trees have dimension equal to its height and correspond to non-
linear programs. Figure 3.2 shows that the derivation tree of Figure 3.1 has di-
mension 1.

In section 3.3 we shall see that given a set of constrained Horn clauses P and
any natural value k, P can be transformed into a new set of clauses P [k] whose
derivation trees are a subset of P ’s derivation trees where we only consider those
with dimension at-most k. This transformation of P into P [k] can be performed
for any natural value k. Program P [k] is called at-most-k-dimension program.
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1

0 1

0 0

FIGURE 3.2: Dimension tree corresponding to the derivation tree
in Figure 3.1

Each such set of clauses P [k] represents an under-approximation of the origi-
nal set of clauses P . We use the term under-approximation in the sense that this
program transformation gives as a result a new program where some sets of
derivation trees have been possibly eliminated. Therefore, if we find a solution
of P , then we also have a solution of P [k]. However, finding a solution for P [k]

does not mean that P has a solution.
We will present the set of rules that given a natural value k, transforms any

CLP P into P [k]. When the value of k is not important, any program generated
using the rules defined in Definition 3.3.1 is called dimension bounded program.

We will also prove that any at-most-k-dimension program P [k] of that form
is contained in the class of piecewise linear programs. Hence, program P [k] can
be transformed into a linear program preserving the equivalence between them.
The linearisation procedure developed in this thesis relies on the structure and
properties of dimension bounded programs.

3.3 At-most-k-dimension programs P [k]

Given a CLP P and k ∈ N, we want to generate a new program P [k] whose
derivation trees have dimension less or equal to k. For each predicate p ocurring
in P , and for each d with 0 ≤ d ≤ k, we generate new predicates p(d) and p[d]

with the following properties. We shall see that p(d) generates derivation trees of
dimension exactly d, i.e., when it occurs in the head of a clause in a derivation
tree, it is the root of a subtree of dimension exactly d. Thus, we say that p(d)

is predicate p of dimension exactly d. Similarly, we shall see that p[d] generates
derivation trees of dimension at most d, i.e., when it occurs in the head of a clause
in a derivation tree, it is the root of a subtree of dimension at most d. Thus, we
say that p[d] is predicate p of dimension at most d. An atom with predicate p[d] or
p(d) is denoted H [d] or H(d) respectively.

Definition 3.3.1. At-most-k-dimension program (or k-dimension-bounded
program) P [k]. Given a CLP P and k ∈ N, P [k] is a new set of constrained Horn
clauses obtained by applying the following rules.

Let H , B, Bi be atoms and let C be a constraint.

1. Linear clauses
If H ← C is in P , then H(0) ← C is in P [k].
If H ← C,B is in P , then H(d) ← C,B(d) is in P [k] for 0 ≤ d ≤ k.

2. Non-linear clauses
If H ← C,B1, B2, ..., Bn is in P , with n > 1, then :



3.3. At-most-k-dimension programs P [k] 17

(a) For 1 ≤ d ≤ k and 1 ≤ j ≤ n, set Zj = B
(d)
j and for 1 ≤ i ≤ n ∧ i 6= j,

set Zi = B
[d−1]
i . Then: H(d) ← C,Z1, ...Zn is in P [k].

(b) For 1 ≤ d ≤ k, and J ⊆ {1, ..., n} with |J | = 2, set Zi = B
(d−1)
i if i ∈ J

and Zi = B
[d−1]
i if i ∈ {1, ..., n} \J . Then: H(d) ← C,Z1, ..., Zn is in P [k].

3. e-clauses:
B[d] ← B(e) is in P [k], for 0 ≤ d ≤ k, and every 0 ≤ e ≤ d.

Example 3.3.2. At-most-1-dimension program of Fibonacci program

c1. fib(0)(0,0).
c2. fib(0)(1,1).
c3. fib(1)(X,Y) ← X > 1, X2 = X - 2, fib[0](X2, Y2), X1 = X - 1, fib(1)(X1, Y1),
Y = Y1 + Y2.
c4. fib(1)(X,Y) ← X > 1, X2 = X - 2, fib(1)(X2, Y2), X1 = X - 1, fib[0](X1, Y1),
Y = Y1 + Y2.
c5. fib(1)(X,Y) ← X > 1, X2 = X - 2, fib(0)(X2, Y2), X1 = X - 1, fib(0)(X1, Y1),
Y = Y1 + Y2.
c6. false(1)← X > 5, fib(1)(X,Y), X > Y.
c7. false(0)← X > 5, fib(0)(X,Y), X > Y.
c8. false[1]← false(1).
c9. false[1]← false(0).
c10. false[0]← false(0).
c11. fib[1](X,Y)← fib(1)(X,Y).
c12. fib[1](X,Y)← fib(0)(X,Y).
c13. fib[0](X,Y)← fib(0)(X,Y).
c14. false← false[1].

This example shows the at-most-1-dimension version of the CLP given in Exam-
ple 2.2.4. The reader can check that any derivation tree with subgoal fib(1)(X,Y)
in its root has dimension exactly 1. Similarly, any derivation tree with subgoal
fib[1](X,Y) in its root has dimension 1 or 0. In other words, it is not possible
to generate a tree of dimension 2 or greater if the subgoal from which we start
the derivation steps contains a predicate of dimension 1. Also note that now
false(1), false(0), false[1] and false[0] are new predicates in the dimension bounded
program. Clause c14. is not the result of applying any of the rules in Defini-
tion 3.3.1. We have added this clause in order to preserve the interpretation of
predicates false(1), false(0), false[1] and false[0] as FALSE. Note that false in the
head of clause c14. is not an atom but the logic symbol interpreted as FALSE. Fi-
nally, notice that the at-most-0-dimension version of the program is included in
the at-most-1-dimension version of the program. In general, P [k1] ⊂ P [k2] where
k1 < k2.

We stated at the end of the previous section that P [k] represents an under-
approximation of the original set of clausesP . We used the term under-approximation
in the sense that this program transformation gives as a result a new program
where some sets of derivation trees have been possibly eliminated. As a result,
finding a solution for P [k] does not guarantee that P has a solution. The next
example illustrates this.
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Example 3.3.3. Recall the CLP P given in Example 2.2.11:

c1. triangular(X)← Y1 ≥ 0, Y2 ≥ 0, Y2 = Y1 + 1, X = (Y1*Y2)/2.
c2. square(X)← X≥ 0.
c3. square(X) ← Y1 ≥ 0, Y2 ≥ 0, Y2 = Y1+1, triangular(Y1), triangular(Y2),
X = Y1 + Y2.

We build P [0] following Definition 3.3.1:

c1. triangular(0)(X)← Y1 ≥ 0, Y2 ≥ 0, Y2 = Y1 + 1, X = (Y1*Y2)/2.
c2. square(0)(X)← X≥0.
c3. triangular[0](X)← triangular(0)(X).
c4. square[0](X)← square(0)(X).

In this case a solution for P [0] is {triangular(0)(1), triangular[0](1), square(0)(2),
square[0](2)}. The reader may wonder why the ground atoms square(0)(2) and
square[0](2) belong to the solution if 2 is not the square of any natural number.
The reason is that square(0)(X) and square[0](X) are true in P [0] if X≥ 0, without
any other restriction on X .

This solution for P [0] yields to the following solution for P : {triangular(1),
square(2)}. However, the reader can check that this is not a solution for P since
2 does not verify the property of being the sum of two consecutive triangular
numbers.

As we stated in the previous section, every dimension bounded program is
piecewise linear. Before proving this result, we present a lemma that will be
useful in the proof.

Lemma 3.3.4. Given a dimension bounded program P [k], all predicates (represented by
nodes in the dependence graph) contained in the same SCC have the same dimension.

Proof. The reader can observe in Definition 3.3.1 that a clause in P [k] with a
predicate of dimension d in its head cannot contain a predicate of dimension
greater than d in any of its subgoals, where 0 ≤ d ≤ k. Therefore, the SCCs
of the dependence graph of a given P [k] will always contain nodes representing
predicates of the same dimension.

Lemma 3.3.5. If P is a CLP and k ∈ N, then P [k] is piecewise linear.

Proof. Recall the definition of piecewise linear program (Definition 2.3.9) given in
the previous chapter. Now, we will see that, regarding the way we defined the
rules in Definition 3.3.1 to build the at-most-k-dimension version of any CLP
given, the resulting program P [k] verifies Definition 2.3.9.

• Linear clauses: Clauses in P [k] of the form 1. of Definition 3.3.1 verify Def-
inition 2.3.9, as they only contain 0 or 1 subgoal.

• Non-linear clauses: Clauses in P [k] of the form 2a. and 2b. of Definition
3.3.1 verify Definition 2.3.9. The reason is that, considering lemma 3.3.4,
every recursive subgoal, i.e., every subgoal whose predicate is contained
in the same SCC as the predicate in the head, in this case H(d), has to have
dimension d, with 1 ≤ d ≤ k. In clauses of the form 2a., there is only 1 sub-
goal of dimension d, while in clauses of the form 2b., there are no subgoals
of that form. Thus, clauses of the form 2a. and 2b. always verify Definition
2.3.9.
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• e-clauses: Clauses in P [k] of the form 3. of Definition 3.3.1 verify Definition
2.3.9, as they only contain 1 subgoal.

In the following sections, we will use dimension bounded program and program
interchangeably.
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Chapter 4

Linearisation Procedure

4.1 Preliminaries

The ELP procedure or Program Linearisation Procedure is an algorithm that automat-
ically tranforms a dimension bounded set of Horn clauses into a linear program
preserving the equivalence between them. The set of transformations performed
by the procedure includes the introduction of new predicates and its correspond-
ing definition clauses, and the unfold/fold transformation rules . As we shall see
at the end of this chapter, this set of transformations preserves the meaning be-
tween the original and the transformed program (according to the definition of
meaning preservation given in Definition 2.2.12).

The ELP procedure repeatedly applies the CL procedure or Clause Linearisation
Procedure. The CL procedure replaces by linear clauses, non-linear clauses of a
special kind, referred to as minimally non-linear clauses (see Definition 4.1.3). Min-
imally non-linear clauses are always guaranteed to exist in dimension bounded
programs containing non-linear clauses.

Before giving a definition of minimally non-linear clause, we need to give the
notion of transitive closure.

Definition 4.1.1. The transitive closure of a predicate p w.r.t. a program P is
the subset of clauses of P where each clause c satisfies (at least) one of the following
conditions:

1. the predicate in the head of c is p.

2. the predicate in the head of c is a predicate whose node in the dependence graph of
P is reachable from node p.

The reader can observe that the transitive closure of a given predicate de-
pends on the predicate p and also on the program P . However, for simplicity, we
will denote the transitive closure of predicate p in P as tc(p).

For a given P , if all clauses in tc(p) are linear, then p has a linear transitive
closure, otherwise p has a non-linear transitive closure.

The reader may notice that regarding the rules given in Definition 3.3.1, the
transitive closure of predicates of dimension exactly 0 is always linear. As a re-
sult, so does the transitive closure of predicates of dimension at most 0.

Example 4.1.2. Transitive closure of predicate fib(1) w.r.t. program in Example
3.3.2

c1. fib(0)(0,0).
c2. fib(0)(1,1).
c3. fib(1)(X,Y) ← X > 1, X2 = X - 2, fib[0](X2, Y2), X1 = X - 1, fib(1)(X1, Y1),
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Y = Y1 + Y2.
c4. fib(1)(X,Y) ← X > 1, X2 = X - 2, fib(1)(X2, Y2), X1 = X - 1, fib[0](X1, Y1),
Y = Y1 + Y2.
c5. fib(1)(X,Y) ← X > 1, X2 = X - 2, fib(0)(X2, Y2), X1 = X - 1, fib(0)(X1, Y1),
Y = Y1 + Y2.
c13. fib[0](X,Y)← fib(0)(X,Y).

Clauses c3., c4., c5. verify condition 1. in Definition 4.1.1 while clauses c13.,
c1. and c2. verify condition 2. As clauses c3., c4. and c5. are non-linear, the
transitive closure of fib(1) is non-linear. The reader can check that, for the same
reason, the transitive closure of fib[1] is non-linear as well.

Definition 4.1.3. Minimally non-linear clause. A non-linear clause c in a program
P is minimally non-linear if for every predicate p ocurring in a non-recursive subgoal in
c, tc(p) is linear.

Example 4.1.4. At-most-2-dimension program of Fibonacci

c1. fib(0)(0,0).
c2. fib(0)(1,1).
c3. fib(2)(X,Y) ← X > 1, X2 = X - 2, fib[1](X2, Y2), X1 = X - 1, fib(2)(X1, Y1),
Y = Y1 + Y2.
c4. fib(2)(X,Y) ← X > 1, X2 = X - 2, fib(2)(X2, Y2), X1 = X - 1, fib[1](X1, Y1),
Y = Y1 + Y2.
c5. fib(2)(X,Y) ← X > 1, X2 = X - 2, fib(1)(X2, Y2), X1 = X - 1, fib(1)(X1, Y1),
Y = Y1 + Y2.
c6. fib(1)(X,Y) ← X > 1, X2 = X - 2, fib[0](X2, Y2), X1 = X - 1, fib(1)(X1, Y1),
Y = Y1 + Y2.
c7. fib(1)(X,Y) ← X > 1, X2 = X - 2, fib(1)(X2, Y2), X1 = X - 1, fib[0](X1, Y1),
Y = Y1 + Y2.
c8. fib(1)(X,Y) ← X > 1, X2 = X - 2, fib(0)(X2, Y2), X1 = X - 1, fib(0)(X1, Y1),
Y = Y1 + Y2.
c9. false(2)← X > 5, fib(2)(X,Y), X > Y.
c10. false(1)← X > 5, fib(1)(X,Y), X > Y.
c11. false(0)← X > 5, fib(0)(X,Y), X > Y.
c12. false[2]← false(2).
c13. false[2]← false(1).
c14. false[2]← false(0)

c15. false[1]← false(1).
c16. false[1]← false(0).
c17. false[0]← false(0).
c18. fib[2](X,Y)← fib(2)(X,Y).
c19. fib[2](X,Y)← fib(1)(X,Y).
c20. fib[2](X,Y)← fib(0)(X,Y).
c21. fib[1](X,Y)← fib(1)(X,Y).
c22. fib[1](X,Y)← fib(0)(X,Y).
c23. fib[0](X,Y)← fib(0)(X,Y).
c24. false← false[2].

The minimally non-linear clauses w.r.t. this program are c6., c7. and c8. They are
minimally non-linear because they are non-linear and every predicate ocurring
in a non-recursive subgoal has a linear transitive closure. In the case of c6. and
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c7., there is one predicate ocurring in a non-recursive subgoal, fib[0], and tc(fib[0])
is linear. In the case of c8., there are two predicates ocurring in a non-recursive
subgoal, fib(0) in both cases, and tc(fib(0)) is linear. Clauses c3., c4., and c5. are
non-linear but they are not minimally non-linear. The reason is that in c3. and c4.
there is one predicate ocurring in a non-recursive subgoal, fib[1], but tc(fib[1]) is
non-linear. Finally, in the case of cluase c5., there are two predicates ocurring in
a non-recursive subgoal, fib(1) in both cases, but tc(fib(1)) is non-linear.

Basically, the ELP procedure, formally defined in section 4.2.2, selects in turns
minimally non-linear clauses in the given program and replaces them by a set of
linear clauses as given by the CL procedure, formally described in section 4.2.1.
In other words, the CL procedure is a subroutine inside the ELP procedure that
linearises a minimally non-linear clause c in each ELP iteration and gives as a
result a set of linear clauses. This new set of clauses replaces c in the program.

Every dimension bounded program which is not linear is guaranteed to con-
tain at least one minimally non-linear clause. This means that, in each iteration
of the ELP procedure, either the non-linear set of clauses in the program is non-
empty, in which case at least we can find a minimally non-linear clause to lin-
earise in the set; or it is empty, in which case the program is already linear and
the ELP execution stops. The following lemma formally describes this result.

Lemma 4.1.5. Let P be a dimension bounded program and let N be the set of non-linear
clauses in P . Then either N is empty or there is (at least) one minimally non-linear clause
in N .

Proof. We define a strict ordering relation < over the set N , as follows: c1 < c2
iff c1 belongs to the transitive closure of some predicate of a subgoal in clause c2
other than a recursive subgoal (if exists). Let’s prove that this ordering relation
verifies the irreflexive, transitive and assymetric properties.

• not c < c (Irreflexive)

Let c be a non-linear clause in N . Let us assume c < c, i.e., c belongs to the
transitive closure of some predicate of a subgoal in c other than a recursive
subgoal. According to the definition of transitive closure (Definition 4.1.1),
this means that either:

1. there exists a nonrecursive subgoal in c whose predicate is the same
as the predicate in the head of c or,

2. the predicate in the head of c is a predicate whose node in the de-
pendence graph of P is reachable from a predicate in a nonrecursive
subgoal of c.

1. is impossible since if such a subgoal exists, it would be a recursive subgoal
and this contradicts the hypothesis c < c. Also 2. is impossible for the
same reason: if the predicate in the head of c is a node in the dependence
graph of P reachable from a predicate in a nonrecursive subgoal of c, then
this subgoal would be recursive, which again is a contradiction with the
hypothesis c < c. Therefore, the irreflexive property is satisfied.

• if c1 < c2 and c2 < c3 then c1 < c3 (Transitive)

Let c1, c2 and c3 be non-linear clauses in N . Let us assume c1 < c2 and
c2 < c3. This means the following:
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– c1 is in the transitive closure of some predicate ocurring in a nonrecur-
sive subgoal in c2, let’s say p.

– c2 is in the transitive closure of some predicate ocurring in a nonrecur-
sive subgoal in c3, let’s say q.

As the transitive closure of q includes clause c2, it also includes the transi-
tive closure of predicates ocurring in each subgoal in c2, in particular the
transitive closure of p, tc(p). As tc(p) includes c1, then we can conclude
c1 < c3.

• if c1 < c2 then not c2 < c1 (Assymetric)

Let c1 and c2 be non-linear clauses in N . Let us assume c1 < c2 and c2 < c1.
Then, using the transitive property, we would have c1 < c1 which con-
tradicts the irreflexive property, proved just above. Therefore, from the
irreflexive and the transitive properties, we can prove the assymetric prop-
erty.

The minimally non-linear clauses of P are the minimal elements of N under
this ordering relation.

4.2 Linearisation procedure applied to dimension bounded
programs

Definition 4.2.1. Unfolding rule. Given a dimension bounded program P and a clause
c in P of the form Q ← C,L,A,R where C is a constraint, Q and A are atoms, and
L and R are (possibly empty) conjunctions of atoms. We consider the set of clauses
{Hi ← Ci, Bi|i = 1, ..., n} in P made out of the (renamed apart) clauses such that, for
i = 1, ..., n,Hi is unifiable withA, via the most general unifier vi and (C,Ci)vi is satis-
fiable. By unfolding c w.r.t. A, we derive the set of clauses {(Q← C,Ci, L,Bi, R)vi|i =
1, ..., n}.

Example 4.2.2. Example of use of the unfolding rule

Given the following set of clauses:

c1. path(X,Y)← X>0, Y>0, arc(X,Y).
c2. path(X,Y)← double_arc(X,Y).
c3. path(X,Y)← path(X,Z), path(Z,Y).

the result of unfolding clause c3 w.r.t. atom path(X,Z) are the following three
clauses:

c4. path(X,Y)← X>0, Z>0, arc(X,Z), path(Z,Y).
c5. path(X,Y)← double_arc(X,Z), path(Z,Y).
c6. path(X,Y)← path(X,W), path(W,Z), path(Z,Y).

Definition 4.2.3. Folding rule. Given a dimension bounded program P and a clause c
in P of the formQ← C,L, S,R whereQ is an atom, C is a constraint, S is a non-empty
conjunction of atoms, and L and R are (possibly empty) conjunctions of atoms; and a
clause c′ of the form N ← D, where N is an atom and D is a non-empty conjunction of
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atoms such that, for some substitution v: (D)v = S then by folding c using c′ we derive
the clause Q← C,L, (D)v,R.

Example 4.2.4. Example of use of the folding rule

Given the following set of clauses:

c1. new(X,Z)← path(X,Y), path(Y,Z).
c2. path(X,Y)← path(X,Z), path(Z,Y).

the result of folding clause c2 using clause c1 is the following clause:

c3. path(X,Y)← new(X,Y).

Definition 4.2.5. Introduction of new clauses. Applying this rule we introduce a
new clause (not ocurring before in the program) defining a new predicate. This clause is
of the form new(X)← J where new is a new predicate symbol,X is the tuple of variables
ocurring in J and J is a non-empty conjunction of atoms.

These new clauses defining new predicates are called Eureka Definitions. The
introduction of Eureka Definitions is a step in the linearisation procedure that we
present in the following section.

Definition 4.2.6. An unfolding selection rule is a rule that maps clauses to atoms.
Given a clause, it returns a selected atom in its body.

We will write U-rule to denote an unfolding selection rule.

Definition 4.2.7. Linear unfolding selection rule. Given a clause c in a dimension
bounded program P , a linear unfolding selection rule is an U-rule that returns a subgoal
in c whose predicate has a linear transitive closure. This rule is undefined if there is not
such a subgoal in c.

We will write L-rule to denote a linear unfolding selection rule. If there are
two subgoals in c verifying the previous condition, the L-rule selects nondeter-
ministically one of them.

Definition 4.2.8. Linear lowest-dimension-first unfolding selection rule. Given a
clause c in a dimension bounded program P , a linear lowest-dimension-first unfolding
selection rule is an L-rule that returns a subgoal in c whose predicate has the lowest
dimension.

We will write I-rule to denote a linear lowest-dimension-first unfolding se-
lection rule. In the case of occurring two subgoals in c verifying the previous
condition, the I-rule selects nondeterministically one of them.

Example 4.2.9. Example of linear lowest-dimension-first unfolding selection rule

Given the program in the Example 4.1.4 and given a linear lowest-dimension-
first unfolding selection rule S:

1. S applied to clause c6. in the program returns the subgoal fib[0](X2, Y2)
because it is the only subgoal in c6. whose predicate has a linear transitive
closure.
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2. S applied to c8. returns the subgoal fib(0)(X2, Y2). Note that the predicates
of both subgoals in c8. have a linear transitive closure and have dimen-
sion 0. Therefore, S selects nondeterministically one of them, in this case
fib(0)(X2, Y2).

3. S is not defined for clause c3., for instance, because neither fib[1](X2, Y2)
nor fib(2)(X1, Y1) has a linear transitive closure.

Lemma 4.2.10. An I-rule is always defined for minimally non-linear clauses in bounded
dimension programs.

Proof. From definition 4.1.3, we have that every minimally non-linear clause in
a bounded dimension program P has a subgoal B whose predicate’s transitive
closure w.r.t. P is linear. For more than one subgoal verifying the previous con-
dition, it is possible to select the atom whose predicate has the lowest dimension
(in case of having more than one subgoal verifying the two previous conditions,
the I-rule will select nondeterministically one of them).

Definition 4.2.11. Unfolding tree. Let P be a dimension bounded program, c a clause
in P and S an I-rule. An unfolding tree T w.r.t. c in P via S is a labeled tree with
clauses, constructed as follows:

• c is the root label of T .

• If M is a node labeled by a clause cm and B is the atom selected by S in cm then
for each clause cn that results from unfolding cm w.r.t. atom B, there is a child
node N of M labeled by cn.

We will write I-tree to denote an unfolding tree w.r.t. to an I-rule.

Example 4.2.12. Example of unfolding tree

Given the program in the Example 4.1.4, we build the unfolding tree w.r.t. c6.
vía an I-rule S (as the one given in the Example 4.2.9):

c6. fib(1)(X,Y)← X>1,X2=X-2,fib[0](X2,Y2),X1=X-1,fib(1)(X1,Y1),Y=Y1+Y2

fib(1)(X,Y)← X>1,X2=X-2,fib(0)(X2,Y2),X1=X-1,fib(1)(X1,Y1),Y=Y1+Y2

fib(1)(X,Y)← X>1,0=X-2,fib(0)(0,0),X1=X-1,fib(1)(X1,Y1),Y=Y1+0

fib(1)(X,Y)← X>1,1=X-2,fib(0)(1,1),X1=X-1,fib(1)(X1,Y1),Y=Y1+1

FIGURE 4.1: Unfolding tree w.r.t. c6. vía S

We have underlined the atoms selected by S at each parent node.

Definition 4.2.13. Upper portion of a tree. A non-empty tree T ′ is called an upper-portion
of a tree T if it verifies both conditions:

1. The root node of T ′ is also the root node of T .

2. For every node N of T ′, N is also a node of T and either N is a leaf node of T ′ or
all child nodes of N in T are also child nodes of N in T ′.

An upper portion of a tree T is trivial if it only consists of a single node. In
any other case, we say it is non-trivial.
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Example 4.2.14. Example of upper portion of a tree

T is a tree where each label Ni, with i ∈ N, represents a node.

N0

N1

N3 N4

N2

N5

FIGURE 4.2: Tree T

N0

N1 N2

N5

(A) This is an upper portion of T

N0

N1

N3

N2

N5

(B) This is not an upper portion of T since it does
not verify condition 2 in Definition 4.2.13

The following lemma implies that when we unfold a minimally non-linear
clause in a bounded dimension program via an I-rule S, then S is also defined
for all the non-linear clauses that result from this unfolding as these clauses are
also minimally non-linear.

Lemma 4.2.15. Let c be a minimally non-linear clause in a bounded dimension program
P , S an I-rule and T an I-tree w.r.t. clause c in P via S. Then every non-linear clause in
the set of leavesL of any finite upper-portion of T is minimally non-linear in (P\{c})∪L.

Proof. We will give a proof by contradiction. Let p be the predicate of the atom
selected by S in the body of c. Now suppose that a clause cn ∈ L is not minimally
non-linear. From definition 4.1.3, it follows that there is a non-recursive subgoal
in cn whose predicate’s transitive closure is non-linear. Let q be the predicate of
this non-recursive goal in cn. The clauses in the transitive closure of q are also in
the transitive closure of the predicate p. This means that the transitive closure of
p is non-linear which is a contradiction since c is minimally non-linear and S is
an I-rule.

The following definitions introduce two kinds of upper-portion of I-trees that
will be built by the procedure in order to decide when to stop the unfolding,
which Eureka Definitions to introduce, and when to start the folding.

Definition 4.2.16. Let P be a dimension bounded program, c a clause in P , S an I-
rule, and T an I-tree w.r.t. c and P via S. A finite upper-portion U of T is said to be
F-linearisable w.r.t. a set of Eureka Definitions ED if each leaf of U

• either can be folded using as folding clause a definition in the set ED and giving as
a result a linear clause,

• or is a linear clause.
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Definition 4.2.17. Let P be a dimension bounded program, c a clause in P , S an I-
rule, and T an I-tree w.r.t. c and P via S. A finite upper-portion U of T is said to be
E-linearisable if each leaf of U is

• either a linear clause,

• or an Eurekable clause. An eurekable clause is a clause cn in a node of a I-tree
T w.r.t. c in P via S such that, there is an ancestor cm of cn in T and a tuple J of
atoms such that the tuples of all the subgoals in cn and cm are instances of J .

We will say that U is minimal F-linearisable iff there exists no F-linearisable
upper portion U ′ of T , with U ′ 6= U , that is also an upper portion of U . Likewise,
U is minimal E-linearisable iff there exists no E-linearisable upper portion U ′ of
T , with U ′ 6= U , that is also an upper portion of U .

The detection of an Eurekable clause in an E-linearisable upper portion tell
us when to stop unfolding in the corresponding branch of the I-tree and intro-
duce a new Eureka Definition. The body of the Eureka Definition consists of the
tuple J . Further details of the way Eureka Definitions are constructed is given in
Algorithm 1.

Example 4.2.18. Example of a F-linearisable upper portion of an I-tree w.r.t. a set
of Eureka Definitions
In section 4.2.3, we present an example of the ELP procedure applied to a dimen-
sion bounded program. Figures 4.6, 4.7, 4.9, 4.10, 4.12 and 4.13 are examples of
F-linearisable upper portions of an I-tree w.r.t. a given set of Eureka Definitions.

Example 4.2.19. Example of a E-linearisable upper portion of an I-tree w.r.t. a
clause in a program
In the example of section 4.2.3, Figures 4.4, 4.5, 4.8 and 4.11 are examples of E-
linearisable upper portions of an I-tree w.r.t. a clause in the given program.

The following lemma implies that given a minimally non-linear clause in a
bounded dimension program P , an I-rule S and an I-tree T w.r.t. c in P via S, it
is always possible to build a finite E-linearisable upper portion of T .

Lemma 4.2.20. Let P be a bounded dimension program, c a minimally non-linear clause
in P , S an I-rule, T an I-tree w.r.t. P and c via S. Then there exists at least an E-
linearisable upper portion of T .

Proof. The main idea of the proof is to show that the definition given in 4.2.17 of
an E-linearisable upper portion of T w.r.t. P and c via S leads to a finite structure
in a finite number of steps. The I-rule S always selects an atom whose transitive
closure is linear. Thus, the number of subgoals in the clauses that result from
unfolding clause c (any descendant of c in T ) is less than or equal to the number
of subgoals in c. As the number of predicates in P is finite (P is finite), it is
evident that in a finite number of unfolding steps from the root of T we can find
either a linear clause or a clause cn that is eurekable.
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4.2.1 Clause Linearisation Procedure

The Clause Linearisation Procedure or CL procedure is an algorithm that, given
a bounded dimension program P , a minimally non-linear clause c in P and an
I-rule S, replaces c by a set of linear clauses LC in P , so that the equivalence
between program P and program (P \ {c}) ∪ LC is preserved (recall Definition
2.2.12).

Algorithm 1 Clause Linearisation Procedure (CL procedure)
1: procedure CLPROCEDURE(P , c, S)

Input: A bounded dimension program P , a minimally non-linear clause c in P and
an I-rule S.
Output: A set of linear clauses LC and a set of Eureka Definitions ED.

2: Construct the minimal E-linearisable upper portion U of a I-tree T w.r.t. P and c via
S.

3: For every leaf cn in U which is eurekable via an ancestor cm introduce a fresh predi-
cate symbol new(d) and construct a clause:
e: new(d)(X1,...Xn)← J where

• J is a conjunction of atoms such that both the conjunction Jn of all subgoals in
clause cn and the conjunction Jm of all subgoals in clause cm are instances of
J . We will use as J the most specific generalisation (recall the examples given in
Example 3.1.7) of Jn and Jm.

• {X1, ..., Xn} is the minimal subset of the set of all variables in J such that both
clauses cn and cm can be folded using e.

• The natural number d must be chosen accordingly to the rules specified in Def-
inition 3.3.1.

4: Let ED be the set consisting of all clauses of the form e constructed as above after
having eliminated "copies", differing from other clauses in the set only in the names
of the predicates they define, and in the order of the variables in the heads.

5: Select the minimal F-linearisable upper portion U ′ of U w.r.t. ED.
6: for each clause e in ED:
7: Construct the minimal non-trivial F-linearisable upper portion Ue w.r.t. ED of an

I-tree w.r.t. e in P via S.
8: Let LC be the set of all linear clauses in the leaves of U ′ and Ue together with the set

of all clauses that result from the folding of the non-linear clauses in the leaves of U ′

and Ue using the clauses in ED.

Note that U ′ in step 5 can be a trivial upper portion of U while Ue in step 7 is
necessarily non-trivial, i.e., it is not allowed to fold the corresponding e using e
itself. This is called self-folding and it does not preserve the meaning of programs.

The following lemma implies that an I-rule is always defined for all the clauses
inED and, consequently, for all the clauses in Ue, for all e ∈ ED. This guarantees
that step 7 is always feasible.

Lemma 4.2.21. Let P be a dimension bounded program, c a clause in P , S an I-rule,
and (LC,ED) be the output of the CL procedure applied to input (P, c, S). Then every
clause in ED is minimally non-linear in P ∪ ED.

Proof. From Lemma 4.2.15 and the way we have constructed Eureka Definitions
in step 3, it follows that if c is minimally non-linear in P then so does every clause
in the set ED.
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4.2.2 Program Linearisation Procedure

Finally, we describe an algorithm that linearises bounded dimension programs,
namely the Program Linearisation Procedure or ELP procedure. This algorithm
repeatedly applies the CL procedure replacing a minimally non-linear clause by
the set of linear clauses that the CL procedure generates for that clause.

Algorithm 2 Program Linearisation Procedure (ELP procedure)
1: procedure ELPROCEDURE(P , S)

Input: A bounded dimension program P and an I-rule S
Output: A set of linear clauses LC and a set of Eureka Definitions ED

2: Let NLC be the set of all non-linear clauses in P
3: i← 0
4: Pi ← P
5: dim← 1
6: while NLC is non-empty do:
7: Select a minimally non-linear clause C from NLC whose predicate in the head

has dimension dim
8: (LCi, EDi)← CLPROCEDURE(Pi, c, S)
9: Pi+1 ← (Pi \ {c}) ∪ LCi

10: NL← NL \ {c}
11: i← i+ 1
12: if for each clause in NLC, the predicate in its head has dimension > dim, then:
13: dim← dim+ 1
14: ED ← ∪iEDi

15: LC ← ∪iLCi

In each iteration, the algorithm selects a minimally non-linear clause c in the
program to replace it by a set of linear clauses. The order in which each clause c
is selected depends on the dimension of the predicate in its head. For short, we
will write that a clause has dimension d iff the dimension of the predicate in its
head is d. Thus, first are chosen those minimally non-linear clauses of dimension
1. Once every minimally non-linear clause of dimension 1 has been linearised,
the algorithm selects those of dimension 2, and so on. This order of selection is
managed by means of the variable dimwhose value is updated to d+1 each time
that all the non-linear clauses of dimension d have been linearised, with d > 0.
This guarantees that if the algorithm is linearising a clause of dimension d + 1
then all clauses of dimension d are already linear.

4.2.3 Example

Let P be the following dimension bounded program:

c1. arc(0)(0,0)← true.
c2. path(0)(X,Y)← Z=Y, path(0)(X,Z).
c3. path(1)(X,Y)← arc(0)(X,Z), arc(0)(Z,Y).
c4. path(1)(X,Y)← Z=Y, path(1)(X,Z).
c5. double(1)(X,Y)← X>0, Y>0, path(0)(X,Z), path(0)(Z,Y).
c6. double(1)(X,Y)← X>0, Y>0, path[0](X,Z), path(1)(Z,Y).
c7. double(1)(X,Y)← X>0, Y>0, path(1)(X,Z), path[0](Z,Y).
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The set of minimally non-linear clauses in the first iteration of ELP is {c3, c5}.
Both clauses have dimension 1 so ELP chooses arbitrarily clause c3 to be lin-
earised.

c3. path(1)(X,Y)← arc(0)(X,Z), arc(0)(Z,Y)

c8. path(1)(0,Y)← true, arc(0)(0,Y)

FIGURE 4.4: E-linearisable upper portion U of a I-tree w.r.t. P and
clause c3

The result of performing step 2 of Algorithm 1 is shown in Figure 4.4. Since all
the leaves of U are linear, the CL procedure for iteration i = 0 returns LC0 = {c8}
and ED0 = {∅}. P1 in the next iteration of ELP is:

c1. arc(0)(0,0)← true.
c2. path(0)(X,Y)← Z=Y, path(0)(X,Z).
c8. path(1)(0,Y)← true, arc(0)(0,Y).
c4. path(1)(X,Y)← Z=Y, path(1)(X,Z).
c5. double(1)(X,Y)← X>0, Y>0, path(0)(X,Z), path(0)(Z,Y).
c6. double(1)(X,Y)← X>0, Y>0, path[0](X,Z), path(1)(Z,Y).
c7. double(1)(X,Y)← X>0, Y>0, path(1)(X,Z), path[0](Z,Y).

Now path(1) is a predicate with a linear transitive closure. Therefore, the set
of minimally non-linear clauses is {c5, c6, c7}. The next clause to be linearised is
c5.

c5. double(1)(X,Y)← X>0,Y>0,path(0)(X,Z), path(0)(Z,Y)

e1. double(1)(X,Y)← X>0,Y>0,Z1=Z, path(0)(X,Z1), path(0)(Z,Y)

FIGURE 4.5: E-linearisable upper portion U of a I-tree w.r.t. P and
clause c5

The result of performing step 2 of Algorithm 1 is shown in Figure 4.5. Clause
e1 is eurekable via clause c5. In this case J =path(0)(X,Y), path(0)(Z,Z1) such that
Jc5 =path(0)(X,Z), path(0)(Z,Y) (underlined) and Je1 =path(0)(X,Z1), path(0)(Z,Y)
(underlined) are instances of J . Therefore, we introduce the Eureka Definition
following the instructions given in step 3 of the CL procedure:

d1. new1(1)(X,Y,Z,Z1)← path(0)(X,Y), path(0)(Z,Z1).

Now, we select the minimal F-linearisable upper portion U ′ of U (Figure 4.5)
w.r.t. ED = {d1}. This means that we fold clause e1 using Eureka Definition d1,
and give as a result linear clause c9:

c5. double(1)(X,Y)← X>0,Y>0,path(0)(X,Z), path(0)(Z,Y)

c9. double(1)(X,Y)← X>0, Y>0, Z1=Z, new1(1)(X,Z1,Z,Y)

FIGURE 4.6: F-linearisable upper portion U ′ of U w.r.t. ED
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Now we proceed to construct the minimal F-linearisable upper portion Ud1

w.r.t. ED. This means that we unfold clause d1 at path(0)(X,Y), and fold the
resulting clause using Eureka Definition d1. The result is linear clause c10.

d1. new1(1)(X,Y,Z,Z1)← path(0)(X,Y), path(0)(Z,Z1)

c10. new1(1)(X,Y,Z,Z1)← Z2=Y, new1(1)(X,Z2,Z,Z1)

FIGURE 4.7: F-linearisable upper portion Ud1 w.r.t. ED

The CL procedure for iteration i = 1 returnsLC1 = {c9, c10} andED1 = {d1}.
P2 in the next iteration of ELP is:

c1. arc(0)(0,0)← true.
c2. path(0)(X,Y)← Z=Y, path(0)(X,Z).
c8. path(1)(0,Y)← true, arc(0)(0,Y).
c4. path(1)(X,Y)← Z=Y, path(1)(X,Z).
c9. double(1)(X,Y)← X>0, Y>0, Z1=Z, new1(1)(X,Z1,Z,Y).
c10. new1(1)(X,Y,Z,Z1)← Z2=Y, new1(1)(X,Z2,Z,Z1).
c6. double(1)(X,Y)← X>0, Y>0, path[0](X,Z), path(1)(Z,Y).
c7. double(1)(X,Y)← X>0, Y>0, path(1)(X,Z), path[0](Z,Y).

Now the set of minimally non-linear clauses is {c6, c7}. The next clause to be
linearised is c6.

c6. double(1)(X,Y)← X>0,Y>0,path[0](X,Z), path(1)(Z,Y)

a1. double(1)(X,Y)← X>0,Y>0, path(0)(X,Z), path(1)(Z,Y)

e2. double(1)(X,Y)← X>0,Y>0,Z1=Z, path(0)(X,Z1), path(1)(Z,Y)

FIGURE 4.8: E-linearisable upper portion U of a I-tree w.r.t. P and
clause c6

The result of performing step 2 of Algorithm 1 is shown in Figure 4.8. As
clause e2 is eurekable via clause a1 (in this case J =path(1)(X,Y), path(0)(Z,Z1)
such that Ja1 =path(0)(X,Z), path(1)(Z,Y) and Je2 =path(0)(X,Z1), path(1)(Z,Y)
are instances of J). Therefore, we introduce the Eureka Definition following the
instructions given in step 3 of the CL procedure:

d2. new2(1)(X,Y,Z,Z1)← path(0)(X,Y), path(1)(Z,Z1).

Now we select the minimal F-linearisable upper portion U ′ of U (Figure 4.8)
w.r.t. ED = {d1, d2}. This means that we fold clause e2 using Eureka Definition
d2, and give as a result linear clause c11.
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c6. double(1)(X,Y)← X>0,Y>0, path[0](X,Z), path(1)(Z,Y)

double(1)(X,Y)← X>0,Y>0, path(0)(X,Z), path(1)(Z,Y)

c11. double(1)(X,Y)← X>0,Y>0,Z1=Z, new2(1)(X,Z1,Z,Y)

FIGURE 4.9: F-linearisable upper portion U ′ of U w.r.t. ED

Then we proceed to construct the minimal F-linearisable upper portion Ud2

w.r.t. ED. This means that we unfold clause d2 at path(0)(X,Y), and fold the
resulting clause using Eureka Definition d2. The result is linear clause c12.

d2. new2(1)(X,Y,Z,Z1)← path(0)(X,Y), path(1)(Z,Z1)

c12. new2(1)(X,Y,Z,Z1)← Z2=Y, new2(1)(X,Z2,Z,Z1)

FIGURE 4.10: F-linearisable upper portion Ud2 w.r.t. ED

The CL procedure for iteration i = 2 returnsLC2 = {c11, c12} andED2 = {d2}.
P2 in the next iteration of ELP is:

c1. arc(0)(0,0)← true.
c2. path(0)(X,Y)← Z=Y, path(0)(X,Z).
c8. path(1)(0,Y)← true, arc(0)(0,Y).
c4. path(1)(X,Y)← Z=Y, path(1)(X,Z).
c9. double(1)(X,Y)← X>0, Y>0, Z1=Z, new1(1)(X,Z1,Z,Y).
c10. new1(1)(X,Y,Z,Z1)← Z2=Y, new1(1)(X,Z2,Z,Z1).
c11. double(1)(X,Y)← X>0, Y>0, Z1=Z, new2(1)(X,Z1,Z,Y).
c12. new2(1)(X,Y,Z,Z1)← Z2=Y, new2(1)(X,Z2,Z,Z1).
c7. double(1)(X,Y)← X>0, Y>0, path(1)(X,Z), path[0](Z,Y).

Finally, the set of minimally non-linear clauses is {c7}, thus c7 is the last
clause to be linearised in P .

c7. double(1)(X,Y)← X>0,Y>0,path(1)(X,Z), path[0](Z,Y)

a2. double(1)(X,Y)← X>0,Y>0, path(1)(X,Z), path(0)(Z,Y)

e3. double(1)(X,Y)← X>0,Y>0, path(1)(X,Z),Z1=Y, path(0)(Z,Z1)

FIGURE 4.11: E-linearisable upper portion U of a I-tree w.r.t. P
and clause c7

The result of performing step 2 of Algorithm 1 is shown in Figure 4.11. As
clause e3 is eurekable via clause a2 (in this case J =path(1)(X,Y), path(0)(Y,Z)
such that Ja2 =path(1)(X,Z), path(0)(Z,Y) and Je3 =path(1)(X,Z), path(0)(Z,Z1)
are instances of J). Therefore, we introduce the Eureka Definition following the
instructions given in step 3 of the CL procedure:

d3. new3(1)(X,Y)← path(1)(X,Z), path(0)(Z,Y).
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Now, we select the minimal F-linearisable upper portion U ′ of U (Figure 4.11)
w.r.t. ED = {d1, d2, d3}. This means that we fold clause e3 using Eureka Defini-
tion d3, and give as a result linear clause c13:

c7. double(1)(X,Y)← X>0,Y>0,path(1)(X,Z), path[0](Z,Y)

double(1)(X,Y)← X>0,Y>0,path(1)(X,Z), path(0)(Z,Y)

c13. double(1)(X,Y)← X>0,Y>0,Z1=Y, new3(1)(X,Z1)

FIGURE 4.12: F-linearisable upper portion U ′ of U w.r.t. ED

Now we proceed to construct the minimal F-linearisable upper portion Ud3

w.r.t. ED. This means that we unfold clause d3 at path(0)(Z,Y), and we fold the
resulting clause using Eureka Definition d3. The result is linear clause c14.

d3. new3(1)(X,Y)← path(1)(X,Z), path(0)(Z,Y)

c14. new3(1)(X,Y)← Z1=Y, new3(1)(X,Z1)

FIGURE 4.13: F-linearisable upper portion Ud3 w.r.t. ED

The CL procedure for iteration i = 3 returnsLC3 = {c13, c14} andED3 = {d3}.
As the set of minimally non-linear clauses in P3 is empty, ELP terminates and re-
turns the set ED = {d1, d2, d3} and the set LC = {c8, c9, c10, c11, c12, c13, c14}.
The resulting linearised program is:

c1. arc(0)(0,0)← true.
c2. path(0)(X,Y)← Z=Y, path(0)(X,Z).
c8. path(1)(0,Y)← true, arc(0)(0,Y).
c4. path(1)(X,Y)← Z=Y, path(1)(X,Z).
c9. double(1)(X,Y)← X>0,Y>0, Z1=Z, new1(1)(X,Z1,Z,Y).
c10. new1(1)(X,Y,Z,Z1)← Z2=Y, new1(1)(X,Z2,Z,Z1).
c11. double(1)(X,Y)← X>0,Y>0, Z1=Z, new2(1)(X,Z1,Z,Y).
c12. new2(1)(X,Y,Z,Z1)← Z2=Y, new2(1)(X,Z2,Z,Z1).
c13. double(1)(X,Y)← X>0,Y>0, Z1=Y, new3(1)(X,Z1).
c14. new3(1)(X,Y)← Z1=Y, new3(1)(X,Z1).

4.2.4 Correctness of ELP

Now we will give two theorems that imply the correctness of the Program Lin-
earisation Procedure. First, we prove the CL procedure correctness. Second, re-
lying on the CL procedure correctness, we prove that the ELP procedure is also
correct.

Theorem 4.2.22. Let P be a dimension bounded program, c a clause in P , S an I-rule,
LC the set of linear clauses returned by the CL procedure applied to input (P, c, S), and
pred(P ) the set of predicates occurring in P . Then

• the CL procedure applied to (P, c, S) terminates,

• M(P ) =Mpred(P )((P \ {c}) ∪ LC).
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Proof. The proof will be divided into two parts. First, we will prove termination
of the CL procedure and second, we will prove the equivalence (recall Definition
2.2.12) between the original program and the transformed program after linearis-
ing one individual clause by means of the CL procedure.

1. Termination:

We will prove that the upper portion of the three unfolding trees con-
structed in the Algorithm 1 can be constructed in a finite number of steps.

(a) E-linearisable upper portion U of a I-tree w.r.t. P and c via S, con-
structed in step 2 of the procedure.
Relying on Lemma 4.2.20, the construction of U can be performed in a
finite number of steps.

(b) F-linearisable upper portion U ′ of U w.r.t. ED, constructed in step 5
of the procedure.
Relying on the construction of Eureka Definitions described in step 3
of the procedure, it is easy to see that the construction of U ′ consists
in folding each leaf of U using the proper Ei in ED and this can be
performed in a finite number of steps (U was a finite structure).

(c) F-linearisable upper portion of UEi of a I-tree w.r.t. P and c via S,
for each Ei in ED, constructed in step 7 of the procedure.
Let’s assume that the I-rule S used in step 2 is the same as the I-rule
used to build UEi . Then, as S is uniquely determined by the set of sub-
goals appearing in a clause, UEi will be constructed in the same way
as the I-tree for the clause which led to the introduction of Ei. Let’s
assume that U is the E-linearisable upper portion of a I-tree such that
L is the clause in a leaf of U for which Ei was introduced. Let A be the
ancestor clause that makes L eurekable. Relying on step 3 of the CL
procedure, clauseEi has the same subgoals as clauseL (andA). There-
fore, we can put in one-to-one correspondence the nodes in UEi with
the nodes of the subtree of U whose root is A. The clause in a node
of UEi has the same subgoals as the clause in the corresponding node
of U and both clauses only (possibly) differ in the set of constraints.
Thus, UEi will be constructed in a finite number of steps.

2. Equivalence:

Our aim is to prove that M(P ) =Mpred(P )((P \ {c}) ∪ LC), where pred(P )
is the set of predicates ocurring in P .

Let’s assume that, initially, our program P consists of every clause in P
together with the set of definitions ED that will be introduced during the
ELP procedure. Thus, Mpred(P )(P ∪ ED) = M(P ). Relying on the correct-
ness of the transformation system described by Definitions 4.2.1 and 4.2.3,
we have that Mpred(P )(P ∪ ED) = Mpred(P )((P \ {c}) ∪ LC). Therefore,
M(P ) =Mpred(P )((P \ {c}) ∪ LC).
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Theorem 4.2.23. Let P be a dimension bounded program, S an I-rule, LC the set of all
linear clauses returned by the ELP procedure applied to input (P, S), NLC the set of all
non-linear clauses in P and pred(P ) the set of predicates occurring in P . Then

• the ELP procedure applied to (P, S) terminates,

• M(P ) =Mpred(P )((P \ {NLC}) ∪ LC).

Proof. Again, we will prove first termination, and second, the equivalence be-
tween the original program and the transformed program by means of the ELP
procedure.

1. Termination:
The ELP procedure always terminates for the following reasons:

(a) Given P , the set NLC is finite.

(b) In each iteration of ELP, one clause in NLC is transformed into linear
by means of the CL procedure.

(c) The CL procedure terminates in a finite number of steps.

2. Equivalence:
The correctness of the CL procedure leads to the correctness of the ELP
procedure.
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Chapter 5

Conclusions

A majority of solvers handle non-linear Horn clauses but there are notable excep-
tions like VeriMAP ([2]) or Sally1. With this work, we conclude that determining
the unsatisifiability of a given non-linear program P , i.e., the lack of solution for
P , can be reduced to determine the unsatisfiability of a linear program, which is
obtained by means of a set of transformations applied to P . The resulting linear
program can be computed using a linear solver. On the other hand, determining
the satisfiability of a given non-linear program P by solving the corresponding
linear program is not always guaranteed.

In [1] it is proved that piecewise linear programs are linearisable, i.e. there
exists an algorithm that transforms them into linear programs which terminates
and preserves the equivalence between the original and the linearised program.
We have proved that dimension bounded programs are piecewise linear and
therefore, such an algorithm exists for them. These dimension bounded pro-
grams are the result of choosing a natural value k and applying the transfor-
mation rules given in Chapter 3 to a set of Horn clauses P with no syntactic
restrictions of any kind. P [k] represents an under-approximation of program P
in the sense that the set of all possible derivations trees of P [k] are a subset of P ’s
derivation trees where we only consider those of dimension at-most k. Thus, if
P [k] is unsatisfiable then we can affirm that P is also unsatisfiable. On the other
hand, if we find a solution for P [k], nothing can be said about the satisifiability
of P . In addition, we have proved that applying ELP procedure to P [k] preserves
the equivalence between the later and the resulting linear program. This means
that there exists a one-to-one correspondence between the set of solutions for P [k]

and the set of solutions for the resulting linear program.
We conclude that, if the linear program that results from applying these trans-

formations to P is unsatisfiable then P is also unsatisfiable. If a solution is found
for the linear program, nothing can be said about the satisfiability of P . Although
dealing with the later case is outside the scope of this work, the notion of proof
decomposition given in [3] can be applied. Thus, if a solution found for the lin-
ear program does not yield to a solution for P then we can increase the value k
to k + 1, obtaining P [k+1]. If the solution for the linear program resulting from
applying ELP procedure to P [k+1] does not yield to a solution yet, the same steps
can be repeated increasing consecutively the value of k until finding a solution
for P , or until resources are exhausted.

Finally, as a part of the work that I carried out in the research institute IMDEA
Software I implemented the ELP procedure in the logic programming language
Prolog. This procedure takes as input a dimension bounded program specified

1https://github.com/SRI-CSL/sally
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in Prolog syntax and gives as a result a linear program preserving the equiva-
lence between the input program and the output program, and a set of Eureka
Definitions built during the procedure. This code is public in a Git repository.2

2https://github.com/elenagutiv/Linearisation-2015
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