
UNIVERSIDAD POLITÉCNICA DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INFORMÁTICOS

New Perspectives on Classical Automata
Constructions

PH.D. THESIS

Elena Gutiérrez Viedma

2021

Copyright c© 2021 by Elena Gutiérrez Viedma

DEPARTAMENTAMENTO DE LENGUAJES Y SISTEMAS INFORMÁTICOS E

INGENIERIA DE SOFTWARE

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INFORMÁTICOS

New Perspectives on Classical Automata
Constructions

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF:

Doctor of Philosophy in Software, Systems and Computing

Author: Elena Gutiérrez Viedma
Double Degree in Mathematics and Computer Science

Advisor: Prof. Pierre Ganty
Ph.D. in Computer Science

June 2020

Thesis Committee

Chair

César Sánchez Sánchez Associate Professor
IMDEA Software Institute
Spain

Secretary

Lars-Åke Fredlund Associate Professor
Universidad Politécnica de Madrid
Spain

Members

Emmanuel Filiot Full-time Researcher
Université Libre de Bruxelles
Belgium

Fernando Rosa Velardo Associate Professor
Universidad Complutense de Madrid
Spain

Hellis Tamm Senior Researcher
Tallinn University of Technology
Estonia

Substitute Members

Albert Rubio Gimeno Full Professor
Universidad Complutense de Madrid
Spain

Elvira Mayordomo Cámara Full Professor
Universidad de Zaragoza
Spain

ii

Abstract of the Dissertation

The Theory of Automata is one of the most fundamental and longstanding
mathematical theories which deals with the study of abstract machines, or au-
tomata, and their computational capabilities. In this thesis, we focus on the
automata models of finite-state automata and pushdown automata, as well as
context-free grammars. These models have been used in numerous applications:
from the synthesis and formal verification of hardware and software systems
to natural language processing applications or digital-image compression tech-
niques. These applications strongly rely on language-theoretic notions where,
still today, many questions are open. The goal of this thesis is to give new
theoretic perspective on a collection of open problems, that are at the core of
classical automata constructions and well-established algorithms. The underly-
ing mathematical tool to approach these questions are equivalence relations on
words as abstractions of languages.

First, we focus on algorithms for obtaining the deterministic automaton
with the minimal number of states for some given regular language. This is
an essential question that arises in many applications such as text processing,
image analysis and program verification. While most minimization techniques
rely on either the fusion of equivalent states or an iterative refinement of an
initial partition of the set of states, like Hopcroft’s or Moore’s algorithm, the
double-reversal method, proposed by Brzozowski, stands isolated from these
methods as it simply combines two classical automata constructions twice in
order to obtain the minimal deterministic automaton. In this thesis, we aim to
understand the language-theoretic basis of the double-reversal method and its
connection with the partition-based techniques, a longstanding question that,
still today, attracts interest. As a result, we provide a uniform framework
of deterministic automata constructions based on finite-index equivalences on
words that allows us to give a new simple proof of the double-reversal method
and shed light on the relation between this algorithm and the partition-based
techniques.

iii

Second, we address the question of comparing the descriptional complex-
ity of pushdown automata against context-free grammars and finite-state au-
tomata for Parikh equivalence, a weaker notion than the standard language
equivalence under which the ordering of symbols in the words is not impor-
tant. The interest on this weaker notion of equivalence is in good part due
to the celebrated Parikh’s Theorem, which shows that every context-free lan-
guage is Parikh-equivalent to some effectively computable regular language.
Our main contribution is to provide an infinite family of pushdown automata
defined over a singleton alphabet that allows us to give lower bounds on the
number of grammar variables (resp. states) of the smallest context-free gram-
mar (resp. finite-state automaton) that is language-equivalent. Since Parikh
equivalence and language equivalence coincide when the alphabet is a singleton,
we achieve our goal by deriving lower bounds for Parikh equivalence as well. As
these lower bounds match existing upper bounds, we conclude the optimality of
known translation procedures in the unary case and for Parikh equivalence, such
as the textbook translation procedure that converts any pushdown automaton
into a language-equivalent context-free grammar.

Finally, we address the question of extending Parikh’s Theorem to the more
general model of weighted automata. It is well-known that Parikh’s Theorem
does not hold for weighted languages. Thus, we study sufficient conditions
under which the so-called Parikh property holds for weighted automata. We
show that every nonexpansive weighted context-free grammar over a commu-
tative semiring satisfies the Parikh property. Furthermore, we give a decision
procedure for the Parikh property for weighted context-free grammars over the
rational numbers that relies on the use of Groebner bases.

iv

Resumen de la Tesis Doctoral

La Teoŕıa de Autómatas es la teoŕıa matemática encargada del estudio de
máquinas abstractas, o autómatas, y sus capacidades computacionales. En esta
tesis nos centramos en los modelos de autómatas de estados finitos y de pila,
aśı como en las gramáticas libres de contexto. Estos modelos encuentran apli-
cación, por ejemplo, en el diseño y verificación formal de software y hardware, en
técnicas de proceso de lenguaje natural o en compresión de imágenes digitales.
Todas estas aplicaciones están basadas en nociones de Teoŕıa de Lenguajes y
Autómatas sobre las que existen numerosas cuestiones sin resolver a d́ıa de hoy.
El objetivo de esta tesis es dar una nueva perspectiva teórica a un conjunto de
cuestiones abiertas que tratan fundamentalmente sobre construcciones clásicas
de autómatas y algoritmos conocidos. La herramienta matemática subyacente
para resolver estas cuestiones son las relaciones de equivalencia sobre palabras,
interpretadas como abstracciones del lenguaje.

Primero, estudiamos algoritmos de minimización de autómatas de estados
finitos, esto es, métodos para obtener el autómata determinista con el mı́nimo
número de estados dado un lenguaje regular. Estos algoritmos juegan un papel
crucial en aplicaciones de procesado de texto y diálogo, análisis de imágenes
y verificación de programas. Mientras que la mayoŕıa de las técnicas de min-
imización se basan en fusionar estados equivalentes o refinar iterativamente
una partición inicial del conjunto de estados del autómata, como los algorit-
mos de Hopcroft o Moore, el conocido algoritmo de Brzozowski se aleja de
estas técnicas, ya que simplemente combina dos conocidas operaciones sobre
autómatas para obtener el autómata mı́nimo. En esta tesis, buscamos entender
la base teórica a nivel del lenguaje del algoritmo de Brzozowski y su conexión
con los algoritmos que se basan en refinar una partición inicial de estados,
una cuestión que a d́ıa de hoy sigue despertando interés. Nuestra contribución
principal es ofrecer un marco uniforme de construcciones de autómatas deter-
ministas definidas a partir de equivalencias sobre palabras que permite dar una
prueba más simple del algoritmo de Brzozowski y clarificar la relación entre este

v

método y las otras técnicas de minimización.
En segundo lugar, comparamos los autómatas de pila con las gramáticas

libres de contexto y los autómatas de estados finitos en cuanto a su comple-
jidad descriptiva cuando todos estos formalismos describen lenguajes Parikh-
equivalentes. La equivalencia de Parikh es una noción más débil que la usual
equivalencia de lenguajes bajo la cual el orden de los śımbolos en las palabras
no es importante. Su interés se debe al célebre Teorema de Parikh que establece
que todo lenguaje libre de contexto es Parikh-equivalente a un lenguaje regular.
Nuestra contribución principal es dar una familia infinita de autómatas de pila
definidos sobre un alfabeto con un único śımbolo que permite dar cotas inferiores
en el número de variables (resp. de estados) de la gramática (resp. autómata)
más pequeña con el mismo lenguaje. Como la equivalencia de Parikh coin-
cide con la de lenguajes cuando el alfabeto sólo tiene un śımbolo, cumplimos
el objetivo planteado obteniendo cotas inferiores para equivalencia de Parikh
también. Al comparar estas cotas con cotas superiores conocidas, concluimos
que algoritmos ya existentes de conversión entre estos formalismos son óptimos.

Por último, buscamos extender el Teorema de Parikh al modelo de autómatas
con pesos. Es bien conocido que este teorema no se cumple para lenguajes con
pesos. Por ello, estudiamos condiciones suficientes bajo las cuales la propiedad
de Parikh se cumpla. Demostramos que toda gramática libre de contexto con pe-
sos sobre un semianillo conmutativo que sea no-expansiva satisface la propiedad
de Parikh. Además, damos un procedimiento de decisión para dicha propiedad
sobre el semianillo de los racionales que se basa en el uso de bases de Groebner.

vi

A mis padres

vii

Acknowledgements

Estas ĺıneas son un modesto agradecimiento a todos los que habéis hecho este
proyecto posible y divertido.

En primer lugar, quiero agredecerle esta oportunidad a la persona más cru-
cial en esta causa, mi supervisor Pierre Ganty. Thank you for trusting on me,
for sharing your time any time, and for your always easy-going attitude. I am
very grateful for all I have learnt from you on Automata Theory and research
methodology since my summer internships until the end of my Ph.D. También
quiero agradecer todo el tiempo compartido a mi compañero de despacho, co-
autor y gran amigo, Pedro. Tu esṕıritu trabajador y tenaz me ha estimulado
siempre, y sin duda, esta tesis no habŕıa sido la misma sin ti.

I would like to thank to Ichiro Hasuo the valuable and unforgettable oppor-
tunity of doing a 6-months internship in Tokyo. I am also grateful to Nicolas
Mazzocchi and Emmanuel Filiot for having me in Bruxelles, it was great to
meet you and your group; and to Roberto Giacobazzi for a great course in
Computability. And thank you both, Emmanuel and Roberto, for taking the
time to read a manuscript of this thesis and write a detailed evaluation.

During these 4 years at IMDEA I have had the pleasure to meet excellent
people and friends: Álex, Álvaro Feal, Álvaro Garćıa, Antonio Faonio, Antonio
Nappa, Artem, Bogdan, Borja, Chana, Felipe, Ignacio, Isabel, Kyveli, Nataliia,
Paloma, Pedro, Platon and Srdjan. You really are a cool group. Me gustaŕıa
mostrar mi agradecimiento de forma más especial a Ignacio, por su constante
predisposición a escuchar y ayudar, y por haberse léıdo la introducción de esta
tesis sin rechistar; y a Chana, for being always a touch of fresh air and for
having gathered us together so many times out of the office. I will always have
a beautiful memory of your internship in Madrid.

El tiempo que dedicas a no pensar en la tesis es casi tan importante como
el que le dedicas, y en ese sentido me siento afortunada de tener unos amigos
de toda la vida extraordinarios que lo han llenado siempre de momentos mem-
orables. Guti y Dani, Marina y Laura, Layos, Carlos, Sara y Vı́ctor, Marta y

ix

la otra Marta, Irene y David, . . . Vosotros śı que hacéis de esto un gran viaje.
Gracias a mis amigos de la universidad, Álvaro, Cris, Edu, los Guilles, Parra,

Pedro y Vı́ctor. Por interesaros por el estado de este documento, por los buenos
momentos que pasamos juntos, y por recordarme siempre lo bueno que está
el brócoli. Gracias especialmente a Guridi, por hablarme del instituto y por
compartir conmigo la primera estancia.

Esta tesis está dedicado a mis padres. A ellos y a mis hermanos, Adrián y
Álvaro, les agradezco, entre tantas cosas, el ejemplo que me han dado y me dan
siempre.

Reservo las últimas ĺıneas a mi gran compañero. Miguel, gracias por tu
tiempo, tu ingenio, tus mil y una formas de sorprenderme siempre y tu cariño.

x

Contents

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 5
1.3 Research Questions . 9
1.4 Contributions of This Thesis . 13

1.4.1 A Perspective Through Congruences 13
1.4.2 A Perspective Through Parikh Equivalence 14
1.4.3 Parikh Equivalence in The Weighted Case 15

1.5 Thesis Structure . 16

2 Preliminaries 19
2.1 Alphabets, Words and Languages 19
2.2 Semirings . 20
2.3 Automata . 20
2.4 Grammars . 25

2.4.1 Weighted case . 29
2.5 Equivalence Relations . 31

2.5.1 Congruences . 31
2.5.2 Parikh Equivalence . 32

3 Finite Automata Constructions Based on Congruences 35
3.1 Introduction . 35

3.1.1 Notation . 37
3.2 Automata Constructions From Congruences 37
3.3 Language-Based Congruences and Their Approximation Using

NFAs . 42
3.3.1 Automata Constructions 43

3.4 Congruences as Language Abstractions 48
3.5 A Congruence-Based Perspective on Known Algorithms 49

xi

Contents

3.5.1 Double-Reversal Method 49

3.5.2 Simulation-Based Double-Reversal Method 50

3.5.3 Generalization of the Double-Reversal Method 53

3.5.4 Moore’s Algorithm . 56

3.6 Related Work . 60

3.7 Concluding Remarks . 61

3.8 Supplementary Proofs . 62

4 Parikh Image of Pushdown Automata 69

4.1 Introduction . 69

4.1.1 Notation . 71

4.1.2 Disassembly and Assembly of Quasi-runs 71

4.2 A Tree-Based Semantics for Pushdown 73

4.3 Parikh-Equivalent Context-Free Grammars 73

4.3.1 The Family P(n, k) of PDAs 74

4.3.2 The Case of Unary Deterministic Pushdown 79

4.4 Parikh-Equivalent Finite-State Automata 82

4.5 Supplementary Proofs . 83

5 Parikh Image of Weighted Context-Free Grammars 87

5.1 Introduction . 87

5.1.1 Notation and Definitions 89

5.1.2 WCFGs and Algebraic Systems 90

5.2 Sufficient Condition for the Parikh Property 92

5.3 A Decision Procedure for the Parikh Property Over the Rationals 94

5.3.1 Groebner Bases . 99

5.4 Related Work . 106

5.5 Concluding Remarks . 107

5.6 Supplementary Proofs . 107

5.6.1 Proof of Theorem 5.2.2 107

5.6.2 Unary Polynomially Ambiguous Grammars 120

6 Conclusions and Future Work 123

xii

Contents

xiii

xiv

List of Figures

1.1 The real Automaton Chess Player. 2

1.2 A finite-state automaton accepting the regular language {anbm |
n,m ≥ 1}. 3

1.3 A pushdown automaton accepting the context-free language {anbn |
n ≥ 1}. 4

1.4 A weighted context-free grammar over the natural numbers. . . 5

2.1 The minimal DFA accepting {anbm | n,m ≥ 1}. 22

2.2 Example of the reverse construction. 23

2.3 Example of a PDA that accepts by final states. 25

2.4 Depiction of the tree c1(c2(c3, c3), c4). 27

2.5 Parse trees that yield to a5. 30

3.1 Relations between the constructions Det`,Detr,Min` and Minr. . 45

3.2 NFA NR and DFAs Detr(NR) and Simr(NR,→). 54

3.3 Extension of the diagram of Figure 3.1 including the átomaton
and the partial átomaton. 61

4.1 Depiction of the tree a1(a2(a3(a4, a4), a5), a2(a3(a4, a4), a5)). . . . 73

4.2 Accepting actree τ of P(2, 1). 86

5.1 Two distinct X-pumping trees with the same yield. 122

xv

xvi

List of Publications

This thesis comprises 3 published papers in peer-reviewed academic conferences.

• Parikh Image of Pushdown Automata
Pierre Ganty and Elena Gutiérrez.
In Proceedings of FCT 2017. [36]

• The Parikh Property of Weighted Context-Free Grammars
Pierre Ganty and Elena Gutiérrez.
In Proceedings of FSTTCS 2018. [37]

• A Congruence-based Perspective on Automata Minimization Algorithms
Pierre Ganty, Elena Gutiérrez and Pedro Valero.
In Proceedings of MFCS 2019. [38]

Other conference articles co-authored during the term of my PhD program,
but not included in this dissertation are:

• Genetic Algorithm for the Weight Maximization Problem on Weighted
Automata
Elena Gutiérrez, Takamasa Okudono, Masaki Waga and Ichiro Hasuo.
In Proceedings of GECCO 2020. [48]

• A Quasiorder-based Perspective on Residual Automata
Pierre Ganty, Elena Gutiérrez and Pedro Valero.
In Proceedings of MFCS 2020. [39]

xvii

List of Publications

xviii

1
Introduction

The Theory of Automata is one of the most fundamental and longstanding
mathematical theories, primarily incepted for modeling the capabilities of com-
puter systems. Nowadays, automata pervade numerous tasks from the design
and verification of hardware and software systems to text and speech recognition
or digital image processing. Still numerous problems on classical automata con-
structions of great relevance in practice are open. The goal of this dissertation
is to give new language-theoretic perspective on a collection of open questions
on classical automata constructions and methods, whose study is motivated by
the use of these models in practice.

1.1 Background

The human ambition for constructing self-operating machines has materialized
recurrently along history, from ancient times, when the first programmable ma-
chines appeared [85], to, undeniably, our days. One intriguing example is The
Turk, also known as The Automaton Chess Player, a chess-playing machine
created in 1770 that was able to compete with a strong game and defeated
a number of challengers, including Napoleon Bonaparte [69]. Any computer
scientist, or enthusiastic of the chess game, might be confused about the capa-
bilities of The Turk to reason about such a complex puzzle at that early stage
of history. Certainly, the Turk had no such ability: nor the resources neither
the knowledge had yet been developed for that sophisticated task. The only
explanation, and indeed the true version of the facts, is that this machine was
actually a hoax, as it was physically operated by a small, yet talented, player
hidden inside.

1

1. Introduction

Source: Wikimedia Commons

Figure 1.1: The real Automaton Chess Player.

There exist other examples along history of real automata that were de-
signed to automatize mechanical tasks, such as the Differencial Engine, devised
by the computer pioneer Charles Babbage during the 1820’s to tabulate poly-
nomial functions. Even though this is not the concept of automata formalized
by the Theory of Automata, where automata are abstract “machines”, both
models point to a common aspiration: to build objects that can model complex
functions by following a predetermined sequence of instructions automatically.
What makes the formal notion of automata more appealing is that they allow
to reason about both how these functions are computed and what we can solve
by performing sequences of steps automatically.

Automata are mathematical objects described as systems that consist of
states and labeled transitions with a simple ultimate purpose: accept or reject
words. Consequently, they define formal languages, or just languages. Despite
of their simplicity, they are very useful to describe what we can do and ex-
pect from hardware and software. As a matter of fact, nowadays automata
stand as a fundamental building block in computer science with a wide range
of applications in the design, analysis and verification of hardware and software
systems.

There exist several types of automata that range from the simplest finite-
state automaton to the more sophisticated Turing machines. In this dissertation
we will focus on finite-state automata, pushdown automata and the equivalent
grammar model, i.e., context-free grammars. We will also be interested in the
more general model of weighted context-free grammars.

2

1.1. Background

Finite-state automata (NFAs1) are transition systems simply described by
a finite set of states and transitions between them, which are labeled over a
finite alphabet of symbols. These labels can represent program instructions,
inputs or outputs, phones or words in a natural language, etc. In addition,
a finite-state automaton specifies an initial and final configuration, which are
distinguished states that allow to define how words are accepted and rejected by
the automaton. Namely, a computation is a sequence of consecutive transitions
from an initial to a final configuration that, as a result, reads a finite sequence
of symbols, i.e., a word. In this case, we say that the word is accepted by the
automaton. If the computation does not start from an initial state or ends in a
final one, the word is rejected. Figure 1.2 illustrates the latter explanation with
an example.

q0 q1 q2
a b

a b

Figure 1.2: A finite-state automaton accepting the regular language {anbm |
n,m ≥ 1}. The unlabeled incoming arrow indicates the initial state and the
doubly circled state corresponds to the final. Note that this automaton is
deterministic, since there is one single initial state and no two transitions labeled
with the same symbol leave the same state.

On the other hand, pushdown automata (PDAs) are finite-state automata
which are additionally provided with an auxiliary memory that obeys a LIFO
policy, also known as stack, that can store an arbitrary number of symbols
from a finite stack alphabet. In consequence, each configuration of a pushdown
automaton is given by a state and a stack content. One use of the stack may be
the storage and retrieval of return addresses during function calls in programs
with procedures. Figure 1.3 shows an example of a pushdown automaton.

In a nutshell, both types of automata accept (possibly infinite) sets of words,
or languages, by means of computations, sequences of labeled transitions from
an initial to a final configuration. Since pushdown automata rely on a more
complex description, they accept a class of language that strictly contains the
languages accepted by a finite-state automaton. More pointedly, while NFAs
accept the regular languages, PDAs recognize the more general class of context-
free languages (CFLs).

The latter languages are also defined as those that can be generated by a
context-free grammar (CFG). This is a model with a recursive structure that

1The N stands for nondeterministic finite-state automata.

3

1. Introduction

q0 q1

a, Z0/XZ0

a,X/XX

b,X/ε

b,X/ε

ε, Z0/ε

Figure 1.3: A pushdown automaton accepting the context-free language {anbn |
n ≥ 1}. At each transition and after the comma we indicate the actions on the
stack. The symbol before the bar indicates the symbol popped from the top of
the stack, and the sequence of symbols after it denotes the symbols pushed into
the stack. Note that the leftmost symbol in the pushed sequence corresponds
to the topmost symbol in the stack. The symbol ε denotes the empty string,
and Z0, the initial stack symbol. In this case, the final configuration is reached
when the stack is empty.

consists of a finite set of rules that indicate how to derive words of the language
by means of replacements of variables by sequences of variables and symbols
from the alphabet. In this setting, the counterpart of computations are grammar
derivations that start from an initial variable and end up in a sequence of
symbols that constitutes the generated word. While CFGs are equivalent to
PDAs in the sense that both represent the context-free languages, regular CFGs,
a restricted class of CFGs, are equivalent to NFAs as both represent the regular
languages.

Finally, in this dissertation we also explore grammar constructions where
rules are augmented with a weight. In that sense, weighted context-free gram-
mars (WCFGs) are a generalization of the classical ones, where every word is
not just generated but it also carries a weight. In general, we assume that the
weights lie over an algebraic structure called semiring, such as the natural or
rational numbers. The weight of a derivation is defined as the semiring product
of the weights of all rules used along the derivation, and the weight of a word is
the semiring sum of the weights of all possible derivations of the word. Thus,
these models generate weighted languages. It is worth to remark that, as in
the unweighted case, WCFGs are equivalent to weighted PDAs (WPDAs) and
regular WCFGs are equivalent to weighted NFAs (WFAs), in the sense that
these models represent weighted context-free languages and weighted regular
languages, respectively. Figure 1.4 shows an example of a WCFG over the
natural numbers.

In practice, these automata pervade numerous tasks in classical and mod-
ern computer science. On one hand, finite-state automata have been widely
applied for the design of switching circuits, the implementation of the lexical
analyzer that conforms compilers and the construction of regular expression en-

4

1.2. Motivation

X → aXX 1

X → a 1

Figure 1.4: A weighted context-free grammar over the natural numbers. We
show the weight of each rule next to it in bold. The language generated by
this grammar is {a2n+1 | n ≥ 0}. The reader can check that, for instance, the
weight of the words a, aaa = a3 and aaaaa = a5 is 1, 1 and 2, respectively.
Since the weight of each rule is 1, the weight of each word in this grammar can
be interpreted as its multiplicity.

gines. They have also been proved useful for approaching problems in additive
number theory [79], for digital image processing and compression [58, 89] and
in the development of regular language learning techniques [44, 3] that enable
applications such as the abstraction of recurrent neural networks [90]. In the
ambit of program verification, finite-state automata are useful tools for per-
forming model checking verification [6, 24] as well as for representing the set of
reachable stack configurations of pushdown systems [13, 35].

On the other hand, pushdown automata, and specially, context-free gram-
mars, play an important role in the definition of the structure of programming
languages, the design of parsers and the description of document formats such
as XML. CFGs producing one single word, i.e., straight-line grammars, have
been successfully used for data compression, also known as grammar-based com-
pression [74, 60]. PDAs also allow to reason about programs with first-order
recursion [13, 35, 80], like asynchronous [40] and multithreaded programs [84].

Finally, the number of applications grows when considering the richer weighted
model. Weighted context-free grammars, in particular stochastic context-free
grammars, have been used for modeling RNA secondary structure [61] and in
natural language processing applications [70]. In formal verification, WFAs
and WPDAs are used for quantitative verification of programs [22, 29, 83], for
interprocedural dataflow analysis [80] and to reason about probabilistic sys-
tems [5, 15]. Other modern applications of WFAs are speech processing [71],
optical character recognition [62], digital image compression [4, 49] and weighted
automata learning [7], which has been used to obtain richer abstractions of re-
current neural networks [75].

1.2 Motivation

All the aforementioned applications are strongly founded on language-theoretic
notions around which, still today, many questions are open.

5

1. Introduction

Notice that the description of finite-state automata, pushdown automata
and context-free grammars always involves finite sets. Therefore, these devices
constitute a finite representation of the languages they recognize, which enables
the implementation of the systems they model with a fixed set of resources.
However, a finite representation of a language does not guarantee having an
effective procedure to solve certain problems about them. For instance, context-
free languages have a finite representation as PDAs, as well as CFGs, but there
is no algorithm that returns always the right answer to the question of whether
the intersection of two CFLs is empty or not, for any given pair of them. In
other words, the empty intersection of context-free languages is an undecidable
problem.

Similarly, WFAs, WPDAs and WCFGs are finite representations of the
weighted languages they accept. In the weighted case, the domain of weights
is important when determining whether a problem is decidable or not. For in-
stance, given a weighted finite-state automaton and a threshold value in the
domain of weights, the threshold reachability problem, i.e., the problem of de-
termining whether there exists a word such that its weight is greater than or
equal to the threshold, is undecidable with respect to the tropical semiring2

with domain in the integers [64], but it becomes decidable when the tropical
semiring has its domain over the naturals [65].

Indeed, many language-theoretic questions of great practical interest in mod-
ern applications are still open and solving them is a challenging goal of active
theoretic research. For instance, one central issue in the application of weighted
finite-state automata to text and speech recognition [72] is that the WFAs used
during the search stage are highly redundant. This means that the same word
can be accepted by several different computations with distinct weights or prob-
abilities. This nondeterminism drastically affects the speed of large vocabulary
speech recognition tasks. However, while in the unweighted case, for each NFA
there exists a deterministic one that accepts the same language, this convenient
property is not true for all WFAs. Partial decidability results regarding this
property are known in certain cases but the general question remains open [2].

Notably, these questions also persist in the ambit of classical automata con-
structions and well-established algorithms that manipulate them. The study of
these longstanding notions is still today a line of active research in Automata
Theory that aims to better understand their language-theoretic basis and pro-
vide practitioners solid ground to explore algorithmic improvements and new
applications.

One clear example is the efforts that have been made to give a common

2For the tropical semiring, the weight of a computation is the sum of the weights of all
transitions used along the sequence, and the weight of a word is the minimum of the weights
of all computations reading the word.

6

1.2. Motivation

theoretic basis to well-known automata minimization methods, i.e., algorithms
that aim to build the deterministic finite-state automaton (DFA) with the least
possible number of states that accepts some given regular language. [20, 9, 1,
87, 18, 12, 43]. Getting the minimal DFA is an essential problem that arises
in many applications such as text processing, image analysis and program ver-
ification. The majority of the minimization methods in the literature rely on
building a partition of the set of states of the automaton, either by an itera-
tive refinement, like Hopcroft’s or Moore’s algorithm [51, 73], or by aggregating
equivalent states [52]. On the other hand, the minimization method proposed by
Brzozowski [16] simply alternates two well-known automata constructions twice
to build the minimal DFA for any input NFA. These two operations are the de-
terminization and reverse constructions3, and thus this method is also known as
the double-reversal method. Despite its exponential worst-case time complex-
ity, the simplicity of the double-reversal method has motivated the study of this
algorithm in the past few decades from different theoretic views [25, 18, 87, 12],
as well as its connection with the partition-based methods [20, 9, 1, 43], with
the goal of providing more efficient versions of it.

Another example is the study of efficient methods that translate pushdown
automata into context-free grammars. If one is interested in producing a CFG
generating the same language as a given PDA, then Goldstine et al. [45] showed
that the standard conversion procedure that appears in textbooks [52] is opti-
mal, in the sense that, no other algorithm produces always a language-equivalent
grammar with fewer variables.

However, there exist other notions of equivalence between languages that are
of great interest in practice. One example is the so-called Parikh equivalence,
a weaker notion than the usual equivalence of words: two words are Parikh-
equivalent if each symbol occurs equally often in both words but not necessarily
at the same positions, such as the words aba and baa. The interest on this notion
of equivalence is in good part due to a celebrated result in the Theory of Formal
Languages known as Parikh’s Theorem [76]. This result shows that for every
context-free language there is an effectively computable regular language that
is Parikh-equivalent. For instance, the CFL {anbn | n ≥ 1} is Parikh-equivalent
to the regular language {(ab)n | n ≥ 1}, since for each word in the first language
there is a word in the second that is Parikh-equivalent, and viceversa.

Among other applications, Parikh’s Theorem has been used in the analysis
of multithreaded asynchronous programs with procedures [40, 84]. Under this
paradigm, each program thread may send asynchronous messages or tasks to
other threads during their execution. Note that the language of all sequences of

3Given an NFA, the reverse automaton results from flipping the source and destination
state of every transition, and the initial and final states, while the determinization operation
refers to the classical subset construction [52].

7

1. Introduction

messages that can be sent by each thread during its executions is a context-free
language. However, since the ordering in which these tasks are dispatched and
processed from the bag of messages is irrelevant in the idiom of asynchronous
programming, given a pushdown automaton representing the language of possi-
ble message sequences, a Parikh-equivalent finite-state automaton can be effec-
tively computed. As a result, the control state reachability problem of programs
following this paradigm is decidable [84].

In the context of program verification, the notion of Parikh equivalence has
also been used for under approximating the reachable state space of multi-
threaded procedural programs and recursive counter programs [41], and for up-
per approximating the set of reachable paths of concurrent programs with pro-
cedures [14]. In both cases, the corresponding Parikh abstraction of context-free
languages representing the reachable program configurations makes emptiness
of the intersection decidable.

Additionally, this equivalence has been used to study the complexity of de-
cision problems for Petri nets, commutative grammars, unary grammars and
semilinear sets [54, 55, 56, 31], and to establish complexity bounds on verifica-
tion problems for counter machines [46] and equational Horn clauses [88].

Going back to the problem of efficient conversion algorithms from PDAs to
language-equivalent CFGs, previous works [23, 78] have proved that when the
alphabet is unary, i.e., is a singleton set, and the input pushdown automaton is
deterministic, there exist translation methods that are more efficient than the
textbook procedure [52] and return grammars with fewer variables. Whether
efficient conversion procedures exist from general PDAs to Parikh-equivalent
CFGs or to Parikh-equivalent NFAs are open questions.

In this dissertation, we address a collection of language-theoretic questions
relative to our models of interest that are at the core of several well-known
algorithms or have great interest for their application in the design and imple-
mentation of computer systems, and we give a novel perspective to solve them.
The common denominator of this study is the use of equivalence relations over
words as language abstractions. More precisely, we will consider two types of
equivalences: congruences with a finite number of equivalence classes, and the
so-called Parikh equivalence. Despite of sharing the same nature, namely, they
are both types of congruences, these equivalences are fundamentally different.
In particular, as opposed to the first type of congruences, Parikh equivalence
defines infinitely many equivalence classes. Their concrete properties will make
these equivalences on words suitable for the study of different classes of au-
tomata.

8

1.3. Research Questions

1.3 Research Questions

Automata minimization methods. Regular languages are those that can
be recognized by a finite-state automaton. On the other hand, one of the early
results in the theory of finite-state automata, the so-called Nerode’s theorem
(see for instance [27]), offers an equivalent characterization of regular languages
in terms of an equivalence relation over words. More precisely, this equivalence
is a congruence.

Broadly speaking, a congruence is an equivalence relation over words with
“good” properties with respect to the concatenation of symbols. Namely, right
congruences behave well w.r.t. concatenation of symbols to the right, while left
congruences behave well w.r.t. left concatenation.

The equivalence relation described in Nerode’s theorem is a right congru-
ence defined in terms of a language L and states that two words, u and v, are
equivalent if they are not distinguishable by L, i.e., uw is in L if and only if vw
is in L, for every w ∈ Σ∗. Concretely, Nerode’s theorem states that a language
L is regular if and only if the index, i.e., the number of equivalence classes, of
the latter relation is finite. An interesting consequence of this theorem is that
the proof provides an automata construction which turns out to be the mini-
mal deterministic automaton for the language (for details on this construction
see for instance [59]). The intuition is that, given a regular language L, the
language read from the initial to each state of the minimal deterministic finite-
state automaton for L coincides with the equivalence classes of Nerode’s right
congruence.

It is not difficult to observe that the construction of the minimal DFA from
Nerode’s right congruence can be generalized to obtain a DFA construction for
any given regular language by using any right congruence of finite index that
precisely4 represents the language. In this dissertation, we are interested in
using this idea to explore the relation between well-known minimization and
determinization operations. This way, we aim to give a new perspective on the
double-reversal method and its connection with the partition-based methods.
This is the (rather general) question we are interested in.

Q1. Can we use congruences of finite-index to give new insights on the
double-reversal method and its connection with the state-partition-based
techniques?

It is worth to remark that, Brzozowski and Tamm [18] also propose a
language-theoretic view when they address a more general version of the double-

4A congruence precisely represents a language if the language can be represented as a
union of equivalence classes of the congruence.

9

1. Introduction

reversal method. In this case, they do not use congruences on words, but the
notion of atoms of the language, i.e., sets of suffixes of the language of an special
kind. Other uniform views to the double-reversal method have been proposed
from a category-theoretic point of view [1, 12] as well as using the geometry of
rectangular decompositions of relations on words [25]. On the other hand, most
of the previous attempts to study the connection between the double-reversal
method and the other minimization techniques rather focus on low-level au-
tomata aspects [20, 9, 43].

Conciseness between PDAs and CFGs for Parikh equivalence. In a
pushdown automaton, the presence of a stack means that, unlike finite-state
automata, these machines are able to “remember” an arbitrary amount of in-
formation, and therefore the number of possible configurations is infinite. This
way, they recognize the class of context-free languages, which strictly contains
the regular languages.

CFLs are also defined as the languages that can be generated by a context-
free grammar. Thus, both representations are equivalent, in the sense that,
given a CFG there exists a PDA that accepts the same language, and viceversa.
In this dissertation, we are interested in comparing the descriptional complexity
of both models. The notion of descriptional complexity, or size, of a formal
structure (PDA or CFG) refers to the number of symbols needed to write down
its description. Put in other words, the length of the string that results from
writing down all the entries of its transition function, in the case of a PDA, or
its set of rules, in the case of a CFG.

To be more precise, we are interested in comparing PDAs against CFGs
when they represent Parikh-equivalent languages. However, to provide some
context, let us first consider the problem of comparing both models when they
represent the same language. In this sense, there exist standard translation
procedures that convert one formalism into the other [52].

On one hand, the classical textbook conversion procedure from a CFG into a
PDA [52] relies on simulating the derivations of the grammar, i.e., the sequences
of replacements of a variable by a list of variables and terminals, using the stack
of a PDA. This way, the grammar variables and the terminals define the stack
alphabet of the PDA, which has one single state. Thus, for a CFG with v ≥ 1
grammar variables and |Σ| ≥ 1 terminals, this procedure produces a PDA with
1 state and v + |Σ| stack symbols. Relying on this construction, it is easy to
see that for every CFG generating some given CFL, there exists an equivalent
PDA of the same size up to some constant. Thus, we conclude that CFGs are
never more concise5 than PDAs, for language equivalence.

5The term concise is w.r.t. the size of the description.

10

1.3. Research Questions

On the other hand, the standard counterpart method [52] defines an equiv-
alent grammar by identifying each variable with a “short” computation of the
PDA that is represented by the source and final state of the computation and
the topmost symbol on the stack when the computation started. The procedure
also defines an extra variable which will be the initial. In consequence, for a
PDA with n ≥ 1 states and p ≥ 1 stack symbols, the CFG that results from
applying the conversion has at most n2p+ 1 variables if n > 1 (p if n = 1).

One natural question is whether there exist PDAs for which the smallest
CFG needs that apparently large number of variables, and thus whether there
exist context-free languages that can be defined much more concisely by PDAs
than by CFGs. This problem was addressed by Goldstine et al. [45] in a paper
where they introduced an infinite family of context-free languages whose rep-
resentation by a pushdown automaton is more concise than by a context-free
grammar. Incidentally, this result shows that the classical conversion proce-
dure [52] of a PDA into a CFG is optimal in general, in the sense that, there is
no other algorithm that produces a grammar with a fewer number of variables.

As we mentioned in the previous section, there exist more efficient meth-
ods [23, 78] to translate PDAs into equivalent CFGs when the PDA is determin-
istic and defined over a unary alphabet. In that case, the number of grammar
variables is proportional to the product of the number of states and stack sym-
bols of the PDA.

In this dissertation, we are interested in comparing PDAs against CFGs
when language equivalence is relaxed to Parikh equivalence. Generally speaking,
these are the question we are interested in.

Q2. What is the relation between the conciseness of PDAs and CFGs when
language equivalence is relaxed to Parikh equivalence?

Observe that, in the unary case, language and Parikh equivalence coincide,
since if the alphabet only contains one element there is no notion of ordering in
the symbols of the words. It follows that question Q2 can be answered solving
the following stronger problem.

Q3. What is the relation between the conciseness of PDAs and CFGs when
the alphabet is unary?

It is worth to note that the family of Goldstine et al. [45] consists of de-
terministic pushdown automata defined over an alphabet of non-constant size
(greater than one). In consequence, their family cannot be used to answer Q3.

Finally, Parikh’s Theorem allows us to compare PDAs and NFAs for Parikh-
equivalent languages.

11

1. Introduction

Q4. What is the relation between the conciseness of PDAs and NFAs for
Parikh equivalence?

Parikh’s Theorem in the weighted case. Continuing our work under the
Parikh equivalence assumption, we are interested in the problem of extend-
ing Parikh’s Theorem to the weighted case. Broadly speaking, this problem
asks, given a weighted pushdown automaton P , whether there exists always
a weighted finite-state automaton A that accepts a Parikh-equivalent language
such that, for each word w, the sum of the weights of all words Parikh-equivalent
to w in P coincides with that of all Parikh-equivalent words to w in A.

This generalization has the potential of expanding the applications of this
result on the analysis of multi-threaded asynchronous programs with procedures
to systems where transitions are augmented with a weight that may represent
the cost of performing the transition or the probability of an event associated
to it. Finding a weighted finite-state automaton that is Parikh-equivalent to
the original program and preserves the costs enables quantitative [22, 29, 83]
and probabilistic analysis [5] of programs following this paradigm.

Petre [77] showed that Parikh’s Theorem does not hold in the weighted case
by means of a counterexample that defines6 the following weighted context-free
language over the alphabet {a} with weights over the naturals:{

(a2n+1, Cn) | n ≥ 0 and Cn is the n-th Catalan number Cn
def
= 1

n+1

(
2n
n

)}
,

for which no weighted finite-state automaton over the naturals exists recognizing
the same set of words with the same weights.7 The reader may check that this
is the weighted language generated by the WCFG from Figure 1.4.

Thus, we are interested in exploring the following question:

Q5. Under which conditions does Parikh’s Theorem hold in the weighted
case?

and, more generally:

Q6. Is the problem of determining if a WPDA satisfies Parikh’s Theorem
decidable?

In the following section we give an overview of the state of the art of the
proposed questions and a (rather detailed) description of the main contributions

6Here we use a notation for weighted languages as sets of pairs (w, x) ∈ Σ∗ × S where S
denotes the semiring of weights. In Chapter 5 we will define a more convenient notation for
our purpose.

7Note that, this is enough since the alphabet they use is unary, i.e., Parikh equivalence
and language equivalence coincide.

12

1.4. Contributions of This Thesis

of this dissertation, including some references to the rest of the document, with
the goal of guiding the reader through the key aspects of this thesis.

1.4 Contributions of This Thesis

1.4.1 A Perspective Through Congruences

In this dissertation we propose the use of equivalence relations over words on
the alphabet Σ that describe finite partitions over Σ∗ to approach the study
of automata minimization algorithms. By interpreting these equivalences as
language abstractions, we will devise the connection between the double-reversal
method and Moore’s algorithm, a partition-based minimization method. This
way, we give a positive answer to question Q1.

First, given a right congruence of finite index and a language L that is pre-
cisely represented by the congruence, i.e., L is a union of equivalence classes,
we will provide a DFA construction (Definition 3.2.1) recognizing L. By instan-
tiating these automata constructions on two concrete right congruences (Defi-
nitions 3.3.1 and 3.3.3), we will identify the minimal DFA for a given regular
language and the determinization operation for a given NFA. We will also define
counterpart automata constructions for the left version of these congruences.
From a left congruence of finite index, we will give an automata construction
(Definition 3.2.3) that is co-deterministic (co-DFA), i.e., an automaton whose
reverse is deterministic. As a result, we provide a framework of finite-state
constructions based on congruences that offers new insights in the connection
between the double-reversal method and Moore’s algorithm, a partition-based
method.

The contributions of this study come as follows.

A congruence-based perspective on the double-reversal method and
its later generalization. The double-reversal alternates a reverse and a de-
terminization operation twice relying on the fact that determinizing a co-DFA
yields to the minimal DFA for the language. Recently, Brzozowski and Tamm
proposed a generalization of this method [18]. More pointedly, they showed
a sufficient and necessary condition (having a co-DFA is only sufficient) that
guarantees that determinizing an NFA N yields to the minimal DFA for the
language of N .

We show that the latter condition can be formulated in simple terms, in-
terpreting congruences as language abstractions (Theorem 3.4.2). Using this
formulation we give a simple and clean alternative proof of the double-reversal
method by Brzozowski [16] in terms of congruences. In this regard, Figure 3.1

13

1. Introduction

shows an overview of the method within our framework of congruence-based
automata constructions. In the light of the proof it is easy to see how to gen-
eralize (Theorem 3.5.2) and improve the double-reversal method by producing
intermediate co-DFAs with possibly fewer states.

A congruence-based perspective on Moore’s algorithm. Using Theo-
rem 3.4.2, we relate the iterations of Moore’s partition refinement algorithm,
which works on the states of the input DFA, to the iterations of the greatest
fixpoint algorithm that builds Nerode’s partition over words (Theorem 3.5.23).

An overview of other related automata constructions. Brzozowski and
Tamm [18] showed that every regular language defines a unique NFA, the so-
called átomaton. We locate this NFA in our framework of automata construc-
tions (see Figure 3.3) and relate their results based on the so-called atoms [18] of
the language within our congruence-based setting. The atoms of a language are
non-empty intersections of complemented and uncomplemented sets of suffixes8

of the language.

1.4.2 A Perspective Through Parikh Equivalence

Goldstine et al. [45] addressed the question of whether there exist PDAs for
which the smallest language-equivalent CFG needs the seemingly large number
of variables given by the standard textbook procedure [52]. In this dissertation,
we revisit this question from the Parikh-equivalence perspective.

PDAs can be polynomially more concise than CFGs in the unary case
and for Parikh equivalence. We explore question Q2 by looking at question
Q3. We define an infinite family of CFLs as Goldstine et al. [45] did but our
family differs drastically from theirs. Given n ≥ 1 and k ≥ 1, each member of
our family is given by a PDA with n states, p = k + 2n+ 1 stack symbols and
one input symbol (Definition 4.3.1). We show that, for each PDA of the family,
every equivalent CFG has Ω(n2(p− 2n− 4)) variables (Theorem 4.3.4).

If the alphabet is a singleton, language equivalence and Parikh equivalence
coincide. Therefore, we conclude that there is a family of CFLs that can be
represented more concisely by a PDA than by a CFG, even if we are interested
just in Parikh equivalence. This way, we extend the work of Goldstine et al.
concluding that the textbook translation of a PDA into a language-equivalent
CFG is optimal9 in the unary case and for Parikh equivalence.

8More precisely, the sets of suffixes are the so-called left quotients of the language, i.e., the
set of all suffixes of the language that have some given word as a prefix.

9We will precise the meaning of optimal in Chapter 3.

14

1.4. Contributions of This Thesis

New polynomial time conversion method from unary deterministic
PDAs to CFGs. We investigate the special case of deterministic PDAs over
a unary alphabet. For this class of PDAs there exist more efficient translation
procedures [23, 78], i.e., methods that produce CFGs with a number of variables
proportional to the product of the number of states and stack symbols of the
input PDA.

Now we give a new definition of an equivalent context-free grammar given
a unary deterministic PDA that achieves the best known bounds [23] by opti-
mizing the standard conversion algorithm (Theorems 4.3.7 and 4.3.8).

PDAs can be exponentially more concise than NFAs in the unary case
and for Parikh-equivalence. Parikh’s Theorem motivates the comparison
of PDAs against NFAs. We use the same family of PDAs to derive an expo-
nential lower bound on the number of states of every Parikh-equivalent NFA
(Theorem 4.4.1). This answers question Q4. Moreover, relying on this lower
bound, we show that a procedure chaining two existing constructions yields
optimal results in the number of states of the resulting NFA.

1.4.3 Parikh Equivalence in The Weighted Case

Petre [77] showed that Parikh’s Theorem does not hold in the weighted case.
In consequence, we explore under which conditions the so-called Parikh pro-
perty holds, as well as whether the property is decidable or not. For these
purposes, we adopt the grammar model, as opposed to the automata model.
In the weighted setting, both representations are also equivalent, in the sense
that WPDAs and WCFGs generate the same class of languages of weighted
words. However, working with WCFGs allows us to exploit their connection
with algebraic systems of equations to give more simple and convincing proofs
of our results.

In the weighted setting, two WCFGs G1 and G2 are Parikh-equivalent if and
only if for each Parikh equivalence class the semiring sum of the weights of
all the words that are Parikh-equivalent w.r.t. G1 and G2 coincide. Thus, we
say that a WCFG G1 satisfies the Parikh property if and only if there exists a
regular WCFG G2 that is Parikh-equivalent to G1.

We propose an extension on known results regarding questions Q5 and Q6
as follows.

A sufficient condition for the Parikh property. It is well-known that the
Parikh property holds if the semiring is commutative and idempo- tent10 [10,

10A semiring S is idempotent iff x+ x = x, for all x ∈ S

15

1. Introduction

66, 68]. Furthermore, Luttenberger et al. [68] showed that a sufficient condi-
tion for a WCFG over the naturals to satisfy the Parikh property is that the
WCFG is nonexpansive. This property depends on the structure of the gram-
mar (as opposed to idempotence, which is a property on the weight domain)
and, intuitively, implies that every word generated by the grammar can be pro-
cessed with a stack of bounded depth. Baron and Kuich [8], who gave a similar
characterization of nonexpansive grammars using rational power series to that
of Luttenberger et al., conjectured that nonexpansiveness was also a necessary
condition for the Parikh property. Recently, Bhattiprolu et al. [10] also explored
the question of giving a sufficient condition, providing a class of WCFGs over
the unary alphabet that always satisfies the condition.

We advance on question Q5 in the following way. We rely on the result of
Luttenberger et al. to give a Parikh-equivalent regular WCFG construction for
a given nonexpansive WCFG defined over any commutative semiring (Theo-
rem 5.2.2). Moreover, we show that the latter property is sufficient but not
necessary by means of a counterexample (Example 5.2.3). This shows that the
conjecture formulated by Baron and Kuich is false, even when the alphabet is
unary. Finally, we prove that the class described by Bhattiprolu et al. is strictly
contained in the class of nonexpansive grammars (see Section 5.6.2).

A decision procedure for the Parikh Property over the rationals. To
the best of our knowledge, question Q6 on the decidability of the Parikh pro-
perty is open. However, it implicitly follows from a result by Kuich and Salo-
maa [67] that, when we equivalently formulate the property in terms of formal
power series, it is decidable over the semiring of rational numbers. Their proof
relies on a cumbersome elimination procedure which is hard to perform even on
toy examples.

We give a decision procedure that sidesteps this problem by applying an
alternative standard technique: Groebner bases (Theorem 5.3.14). This method
allows to illustrate the algorithm on examples with the support of mainstream
open-source computer algebra systems.

1.5 Thesis Structure

First, we introduce common notation and preliminary definitions in Section 2.
More specific notation might be deferred to the beginning of each chapter.
We give a congruence-based perspective on finite-state automata minimiza-
tion methods in Section 3. In Section 4 we compare pushdown automata
against context-free grammars and finite-state automata for the Parikh image
of context-free languages. We continue our work under the Parikh equivalence

16

1.5. Thesis Structure

assumption in Section 5 where we address the weighted extension of Parikh’s
Theorem. Finally, we conclude this dissertation and discuss about future work
in Section 6. At the end of the document we collect a list of acronyms used in
this thesis. A reference to their first use in each section is included.

17

1. Introduction

18

2
Preliminaries

In this section, we introduce the general notation and definitions that we will
use throughout this dissertation. In some cases, we defer more specific notation
to the beginning of the chapter where it is used. We start with the fundamental
elements of Automata Theory: alphabets, words and languages.

2.1 Alphabets, Words and Languages

An alphabet is a nonempty finite set of symbols, generally denoted by Σ. When
Σ is a singleton, we say that the alphabet is unary.

A word is a finite sequence of symbols over the alphabet Σ. If the sequence
is empty, we denote the word by ε, the empty string. Otherwise, the finite
sequence is given by w

def
= a1 · · · an where ai ∈ Σ, for each i ∈ {1, . . . , n} and

n ≥ 1. We say that n is the length of w, and we denote it by |w| = n. If
w = ε then |w| = 0. We use the notation (w)i to denote the i-th symbol in the
sequence w ∈ Σ∗, if 1 ≤ i ≤ |w|; otherwise (w)i = ε.

The set of all words over Σ including the empty string is denoted by Σ∗.
Sometimes we use Σ+ to denote the set Σ∗ \ {ε}. We define a language L over
Σ as any set of words over the alphabet Σ, i.e., any subset of Σ∗. The size of L
is the cardinality of the set L, denoted by |L|.

Given a word w = a1 · · · an ∈ Σ∗, we define the reverse of w as wR
def
=

an · · · a1. Note that εR = ε. Consequently, given a language L, we define the
reverse language of L as LR

def
= {wR | w ∈ L}. Finally, we define the complement

language of L as Lc
def
= {w | w /∈ L}.

Next, we define the algebraic structure used for the domain of the weights

19

2. Preliminaries

of weighted finite-state automata, weighted pushdown automata and weighted
context-free grammars.

2.2 Semirings

A semiring is an algebraic structure (S,+, ·, 0S, 1S) where (S,+, 0S) is a commu-
tative monoid, i.e., a set equipped with an associative and commutative binary
operation + with 0S as identity for this operation; (S, ·, 1S) is a monoid with
identity 1S; the operation · distributes over +, and 0S satisfies that x · 0S =
0S · x = 0S, for all x ∈ S. A semiring is commutative iff x · y = y · x, for every
x, y ∈ S. In this dissertation, we will always assume that semirings are com-
mutative, for a reason that will be clear when we define weighted context-free
grammars (see Remark 2.4.11). A semiring is idempotent iff x + x = x, for all
x ∈ S.

A ring is a semiring where (S,+, 0S) is a commutative group, i.e., every
element in S has an additive inverse. Recall that the additive inverse of an
element x ∈ S is another element y ∈ S such that x+ y = 0S.

A field is a ring where (S \ {0S}, ·, 1S) is a commutative group, i.e., every
element has multiplicative inverse. Recall that the multiplicative inverse of an
element x ∈ S \ {0S} is another element y ∈ S such that x · y = 1S.

We will sometimes use S for both the structure and the underlying set when
the meaning is clear from the context. We will abuse notation and use + and ·
to denote the ordinary sum and product in N, Q and R.

Some classical examples of commutative semirings are (N,+, ·, 0, 1), (Q,+, ·, 0, 1)
and (R,+, ·, 0, 1). The two latter examples are also fields. Common examples
of commutative and idempotent semirings are the Boolean semiring defined as
B = ({0, 1},+, ·, 0, 1) and satisfying the equation 1 + 1 = 1; and the tropical
semiring over the naturals defined as (N ∪ {∞},min,+,∞, 0).

2.3 Automata

In this section, we introduce basic definitions of different automata represen-
tations that we will use throughout this dissertation. All these concepts are
standard and covered in several books on Automata Theory [81, 52, 30]. Let us
start with the notion of (nondeterministic) finite-state automaton.

Definition 2.3.1 (Finite-state automaton). A (nondeterministic) finite-state
automaton (NFA), or simply, automaton, is a 5-tuple N = (Q,Σ, δ, I, F) where
Q is a nonempty finite set of states, Σ is an alphabet of symbols, I ⊆ Q are the

20

2.3. Automata

initial states, F ⊆ Q are the final states, and δ is a finite subset of Q× Σ×Q
called the transition relation.

Each element (q, a, q′) ∈ δ is called a transition, where q, q′ ∈ Q are the
source state and destination state of the transition, respectively, and a ∈ Σ is the
symbol the transition reads. We often use the alternative notation q′ ∈ δ(q, a)
to denote the fact (q, a, q′) ∈ δ.

A path p = (q0, a1, q1)(q1, a2, q2) · · · (qn−1, an, qn) of N , with n ≥ 1, is defined
as a nonempty sequence of consecutive transitions of δ, i.e., the destination state
of every transition in the sequence (except for the last transition) coincides with

the source state of the next transition. We define the source of p as s(p)
def
= q0,

the destination of p as d(p)
def
= qn, and we say that p reads the word a1 · · · an.

We denote by pathsN (w) the set of all paths of N reading w.

Given two sets of states S,D ⊆ Q, we define the language of all words read
by a path of N with source state in S and destination state in D as follows.
Define WN

S,D
def
= {w ∈ Σ∗ | ∃p ∈ pathsN (w) : s(p) ∈ S and d(p) ∈ D}. When S

or D are singletons {q} we write q instead of {q}. In particular, we define the
right language of the state q as WN

q,F and the left language of q as WN
I,q. We say

that a state q is empty iff WN
q,F = ∅, and unreachable when WN

I,q = ∅.

We also define the set of states in N that are reached from S when reading
the word w, and the set of states from which S is reached when reading w.
Formally, postNw (S)

def
= {q ∈ Q | ∃p ∈ pathsN (w) : s(p) ∈ S and q = d(p)} and

preNw (S)
def
= {q ∈ Q | ∃p ∈ pathsN (w) : q = s(p) and d(p) ∈ S}. We will omit

the superscript N from all the terms defined above when it is clear from the
context.

Finally, we define the language of an NFA N as L(N)
def
=
⋃
q∈IWq,F =⋃

q∈F WI,q = WI,F . We usually say that N recognizes or accepts the language
L(N), while we say that every word in L(N)c is rejected by N . If two NFAs
recognize the same language, we say they are language-equivalent, or simply
equivalent.

There exists a class of NFAs that enjoys determinism, i.e., they only have
one initial state and there exists exactly one transition to a destination state for
each pair of source state and alphabet symbol. Thus, the transition relation of
deterministic automata can be interpreted as a total function from Q×Σ to Q.
It is well-known that this class of automata is equivalent to the nondeterministic
automata, namely, every NFA is equivalent to a deterministic automaton [52].
We define deterministic finite-state automata as follows.

Definition 2.3.2 (Deterministic finite-state automaton). A deterministic finite-
state automaton (DFA) D = (Q,Σ, δ, I, F) is an NFA such that I = {q0} and,
for every q ∈ Q and a ∈ Σ, there exists exactly one q′ ∈ Q such that (q, a, q′) ∈ δ.

21

2. Preliminaries

According to this definition, DFAs are always complete, i.e., for each source
state q ∈ Q and alphabet symbol a ∈ Σ, there exists always a destination state
q′ ∈ Q such that (q, a, q′) ∈ δ.

Let us recall here the finite-state automaton given in Figure 1.2. Note that
it is deterministic, and there is no other DFA that accepts the same language
and has fewer states. Therefore, it is the minimal DFA for the language {anbm |
n,m ≥ 1}.

q0 q1 q2
a b

a b

Figure 2.1: The minimal DFA accepting the regular language {anbm | n,m ≥ 1}.

Now we recall the subset automata construction for a given NFA N which
yields a DFA for the language of N [52].

Definition 2.3.3 (Subset construction). Given an NFA N = (Q,Σ, δ, I, F),

define the DFA ND def
= (QD,Σ, δD, ID, FD) where QD

def
= {S | S ⊆ Q}, ID

def
=

{q | q ∈ I}, FD
def
= {S ⊆ Q | S ∩ F 6= ∅} and δD(S, a)

def
=
⋃
q∈S δ(q, a), for each

S ∈ QD and a ∈ Σ.

It follows from the definition that the states of ND correspond to the power
set of Q, also denoted by ℘(Q). Nevertheless, we will only consider as states of
ND the elements of ℘(Q) that are reachable from its initial state. Thus, ND

possibly contains empty states, but no state is unreachable.
By reversing all the arrows of an automaton N , i.e., by flipping the source

and destination state of every transition; and by switching the initial and final
states, we obtain the so-called reverse automaton of N .

Definition 2.3.4 (Reverse construction). Given an NFA N = (Q,Σ, δ, I, F),

the reverse NFA of N is the NFA defined as NR def
= (Q,Σ, δR, F, I) where

(q, a, q′) ∈ δR iff (q′, a, q) ∈ δ.

Every word in the language of NR is the reverse of the corresponding word
in the language of N , and thus L(N) = (L(N))R [81]. Below these lines we
show the reverse automaton of that of Figure 2.1.

The notion of reverse automaton allows us to define co-deterministic au-
tomata as follows.

Definition 2.3.5 (Co-deterministic finite-state automaton). An NFA N is a
co-deterministic finite-state automaton (co-DFA) iff NR is deterministic.

22

2.3. Automata

q0 q1 q2
a b

a b

Figure 2.2: Reverse automaton of the DFA given in Figure 2.1. Note that
it accepts the language {bnam | n,m ≥ 1}, which is the reverse language of
{anbm | n,m ≥ 1}, the language of the automaton in Figure 1.2.

In this case, co-DFAs are always co-complete, i.e., for each target state q′ ∈ Q
and a ∈ Σ, there exists always a source state q ∈ Q such that (q, a, q′) ∈ δ.
Observe that the NFA in Figure 2.2 is a co-DFA since its reverse is deterministic.

While nondeterministic automata (and equivalently, deterministic ones) rec-
ognize the class of regular languages, the more general class of context-free lan-
guages requires a more sophisticated class of automata to be finitely represented,
namely, pushdown automata. Roughly speaking, pushdown automata are finite-
state automata augmented with a stack. Whereas the size of the stack alphabet
is finite, the number of symbols pushed onto the stack can be arbitrarily large.

Definition 2.3.6 (Pushdown automaton). A (nondeterministic) pushdown au-
tomaton (PDA) is a 6-tuple P = (Q,Σ,Γ, δ, q0, Z0) where Q is a finite nonempty
set of states including q0, the initial state, Σ is the input alphabet, Γ is the
stack alphabet including Z0, the initial stack symbol; and δ is a finite subset of
Q× Γ× (Σ ∪ {ε})×Q× Γ∗ called the actions.

We write (q,X) ↪→a (q′, β) to denote an action (q,X, a, q′, β) ∈ δ, where q
is the source state of the action, q′ the target state, X the symbol the action
pops and β, the (possibly empty) sequence of symbols the action pushes. We
sometimes omit the subscript of the arrow.

An instantaneous description (ID) of a PDA is a pair (q, β) where q ∈ Q
and β ∈ Γ∗. We call the first component of an ID the state and the second
component, the stack content. The initial ID consists of the initial state and the
initial stack symbol. When reasoning formally, we use the functions state(·) and
stack(·) which, given an ID, returns its state and the stack content, respectively.

We say that an action (q,X) ↪→a (q′, β) is enabled at ID I iff state(I) = q and
(stack(I))1 = X. Given an ID (q,Xγ) enabling (q,X) ↪→a (q′, β), define the
successor ID to be (q′, βγ). We denote this fact by (q,Xγ) `a (q′, βγ), and call it
a move that consumes a from the input.1 We sometimes omit the subscript of `
when the symbol consumed is not important. A move sequence I0 `a1` · · · `an
In is a finite sequence of IDs I0I1 · · · In with n ≥ 1 such that Ii `ai+1

Ii+1, with

1When a = ε the move does not consume input.

23

2. Preliminaries

0 ≤ i ≤ n−1. We say that the move sequence consumes the word w = a1 · · · an
from the input. We concisely denote this fact as I0 ` w. . . ` In. A move sequence
I ` · · · ` I ′ is a quasi-run when |stack(I)| = 1 and |stack(I ′)| = 0; and a run
when, furthermore, I is the initial ID. Finally, we define the language of a PDA
P as L(P)

def
= {w ∈ Σ∗ | P has a run consuming w}.

We have assumed that a PDA accepts its input by consuming it and emp-
tying its stack at the same time. This assumption is called acceptance by empty
stack. Let us recall here the PDA from Figure 1.3 which accepts by empty
stack.

q0 q1

a, Z0/XZ0

a,X/XX

b,X/ε

b,X/ε

ε, Z0/ε

A PDA accepting the context-free language {anbn | n ≥ 1}.

Remark 2.3.7. There is a second approach to define the language of a PDA,
the so-called acceptance by final states, that establishes that a PDA accepts its
input by consuming it and entering a state from a subset F ⊆ Q of final states.
Both modes of acceptance are equivalent, in the sense that every context-free
language L has a PDA that accepts it by empty stack if and only if L has a
PDA that accepts it by final states (see Theorems 6.9 and 6.11 in [52]). We
give an example of a PDA accepting by final states in Figure 2.3.

As for finite-state automata, one can define the class of deterministic push-
down automata, where no more than one move is enabled at each ID.

Definition 2.3.8 (Deterministic pushdown automata). A deterministic push-
down automaton (DPDA) is a PDA P = (Q,Σ,Γ, δ, q0, Z0) satisfying the two
following properties:

1. for every q ∈ Q,X ∈ Γ and a ∈ Σ ∪ {ε}, |δ(q, a,X)| ≤ 1 and,

2. for every q ∈ Q and X ∈ Γ, if δ(q, ε,X) 6= ∅ then δ(q, a,X) = ∅ for every
a ∈ Σ.

Note that the PDA given in Figure 1.3 is deterministic, as it satisfies the
two conditions above.

Remark 2.3.9. Unlike general PDAs, the two modes of acceptance of DPDAs,
i.e., by empty stack and by final state, are not the same. In fact, both au-
tomata models define different proper subclasses of context-free languages. To
be precise, the class of languages accepted by a DPDA by final states strictly

24

2.4. Grammars

includes the regular languages and is strictly included in the context-free lan-
guages, while the class of languages accepted by a DPDA by empty stack is
strictly included in that of the languages accepted by a DPDA by final state.2

We define the class of deterministic context-free languages (DCFLs) as the lan-
guages that can be accepted by a DPDA by final states. A classical example
of a context-free language that cannot be accepted by a DPDA by final states
is the language of even-length palindromes over the alphabet Σ = {a, b}, i.e.,

L
def
= {wRw | w ∈ Σ∗} [52].

q0 q1 qf

a, Z0/XZ0

a,X/XX

b,X/ε

b,X/ε

ε, Z0/Z0

Figure 2.3: A PDA that accepts by final states the same language as that of
Figure 1.3, i.e., {anbn | n ≥ 1}. In this case, its set of final states is F = {qf}.
Note that it is also deterministic. Therefore, {anbn | n ≥ 1} is a DCFL.

2.4 Grammars

Regular languages and the more general class of context-free languages have
also a finite recursive representation as grammars. We will first introduce the
definition of context-free grammars and then, we will define regular grammars
as a particular case.

Definition 2.4.1 (Context-free grammar). A context-free grammar (CFG) is
a 4-tuple G = (V,Σ, S, R) where V is a finite set of variables including S, the
start variable, Σ is the alphabet or set of terminals and R ⊆ V × (V ∪ Σ)∗ is a
finite set of rules.

We will denote the rules as X → α, with X ∈ V and α ∈ (V ∪ Σ)∗, where
X and α are the head and the body of R, respectively. We will represent all the
rules of the grammar sharing the same head by listing the head variable once,
followed by all the bodies of rules with that variable separated by a vertical

2More pointedly, the class of languages accepted by DPDAs by empty stack is exactly the
class of languages accepted by DPDAs by final states that are prefix-free, i.e., no word in the
language is the prefix of another word in the language. For instance, the language a∗ is not
prefix-free, and thus no DPDA by empty stack accepts it. Since a∗ is regular, the languages
accepted by DPDAs by empty stack do not include the regular languages.

25

2. Preliminaries

line. For instance, if X → α and X → β are all the rules with head X in a
given grammar, then we will write these two rules compactly as X → α | β.

CFGs generate strings by means of derivations, i.e., finite sequences of steps
that, starting from the start variable, replace any variable of the current string
by the body of one of its rules until the resulting string contains only terminals.
To describe each step of a derivation we use the relation symbol ⇒.

Formally, given a CFG G = (V,Σ, R, S) and a rule π = X → α ∈ R, we write
β X γ

π
=⇒ β α γ to denote one derivation step of G, with β, γ ∈ (V ∪ Σ)∗. We

usually omit the superscript of ⇒ when it is not important. We say that β X γ
and β α γ are derivation sentences of G. A derivation sequence is a sequence
α1

π1=⇒ α2
π2=⇒ . . .

πn=⇒ αn where each αi
πi=⇒ αi+1 is a derivation step. We use

the symbol ⇒∗ to denote zero or more steps of a derivation sequence, and ⇒+

to denote one or more steps of a derivation sequence. Finally, we define the
language generated by a CFG G as L(G)

def
= {w ∈ Σ∗ | S ⇒+

G w}.

Example 2.4.2. Consider the CFG G = ({X}, {a, b}, R,X) where the set of
rules R is given as:

X → aXb | ab .

This CFG generates the same language as the PDAs from Figures 1.3 and 2.3,
i.e., {anbn | n ≥ 1}. An example of a derivation sequence of this grammar is
X ⇒ aXb⇒ aaXbb⇒ aaabbb.

J

In order to represent derivation sequences, it is common to use parse trees [52],
i.e., tree structures that describe how the terminals of a string are grouped into
substrings, each generated by one variable of the grammar.

We will write parse trees as labeled trees. Since this is not the only use we
will do of labeled trees (see Section 4.2), we will give here a formal definition
and some related notions.

Definition 2.4.3 (Labeled tree). A labeled tree c(τ1, . . . , τn) (n ≥ 0) is a finite
tree whose nodes are labeled, where c is the label of the root and τ1, . . . , τn are
labeled trees, the children of the root.

When n = 0 we prefer to write c instead of c(). Each labeled tree τ defines
a sequence, denoted τ , obtained by removing the symbols ‘(’, ‘)’ or ‘,’ when
interpreting τ as a string, e.g., c(c1, c2(c21)) = c c1 c2 c21. The size of a labeled
tree τ , denoted |τ |, is given by |τ |, and it coincides with the number of nodes
in τ .

We recall the notion of dimension of a labeled tree [33] and we relate di-
mension and size of labeled trees in Lemma 2.4.6.

26

2.4. Grammars

Definition 2.4.4 (Dimension of a labeled tree). The dimension of a labeled
tree τ , denoted as d(τ), is inductively defined as follows. d(τ) = 0 if τ = c,
otherwise we have τ = c(τ1, . . . , τk) for some k > 0 and

d(t) =

{
maxi∈{1,...,k}d(τi) if there is a unique maximum,

maxi∈{1,...,k}d(τi) + 1 otherwise.

Example 2.4.5. Consider the labeled tree τ = c1(c2(c3, c3), c4), depicted in

Figure 2.4. The sequence t is c1 c2 c3 c3 c4 and |t| = 5. The annotation
d(τ)
τ (. . .)

shows that τ has dimension 1:

1
c1 (

1
c2 (

0
c3,

0
c3),

0
c4) .

c1

c2

c3 c3

c4

Figure 2.4: Depiction of the tree c1(c2(c3, c3), c4).

J

Lemma 2.4.6. Let τ be a labeled tree. Then, |τ | ≥ 2 d(τ).

Proof. By induction on |τ |.
Base case. Since |τ | = 1 necessarily τ = a and d(τ) = 0. Hence 1 ≥ 20.
Inductive case. Let τ = a(a1(. . .), . . . , ar(. . .)) with r ≥ 1. We study
two cases. Suppose there is a unique subtree τx = ax(. . .) of τ with x ∈
{1, . . . , r} such that d(τx) = d(τ). As |τx| < |τ |, the induction hypothesis
shows that |τx| ≥ 2 d(τx) = 2 d(τ), hence |τ | ≥ 2 d(τ).

Next, let r ≥ 2 and suppose there are at least two subtrees τx = ax(. . .)
and τy = ay(. . .) of τ with x, y ∈ {1, . . . , r} and x 6= y such that d(τx) =
d(τy) = d(τ)− 1. As |τx| < |τ |, the induction hypothesis shows that |τx| ≥
2 d(τx). Applying the same reasoning to τy we conclude from |τ | ≥ |τx|+ |τy|
that |τ | ≥ 2 d(τx) + 2 d(τy) = 2 · 2 d(τ)−1 = 2 d(τ).

Thus, we write a parse tree as the labeled tree τ = π(τ1, . . . , τn) to denote
that the topmost level of τ is induced by the grammar rule π and has exactly
n children nodes which root (from left to right) the parse trees τ1, . . . , τn. This

27

2. Preliminaries

means that the body of π contains n grammar variables where the i-th (from
the left) is derived according to τi. We define the yield of a parse tree τ =
π(τ1, . . . , τn), denoted as Y(τ) inductively as follows. If n = 0, then Y(τ) =
α where π is of the form X → α and α ∈ (V ∪ Σ)∗. Otherwise, Y(τ) =
α1Y(τ1) . . . αnY(τn)αn+1 where π is of the form X → α1X1 . . . αnXnαn+1 with
αi ∈ (V ∪Σ)∗, and each Xi corresponds to the head of the rule in the root of τi.

Note that, for each parse tree, there might be several ways to construct a
derivation sequence if no restriction is imposed on the number of choices of
variables to be replaced throughout the derivation. Thus, we will assume that
the derivation policy for CFGs, i.e., the derivation strategy that determines the
next variable to replace at each derivation step, defines one unique derivation
sequence for each parse tree. One example of such a derivation policy is the
so-called left-most derivation policy, which always replaces the leftmost variable
in the derivation sentence at each step of the derivation.

Note also that there might be several parse trees that yield to the same
word. Thus, we define the multiplicity or ambiguity of a word as the number
of different parse trees that yield to the word. If a CFG generates every word
with ambiguity one, we say that the CFG is unambiguous. Otherwise, it is
ambiguous.

Additionally, we will assume that CFGs are cycle-free, i.e., no derivation
sequence is of the form X ⇒+ X, with X ∈ V . This guarantees the convenient
property that the ambiguity of every word generated by a CFG is always finite.

Context-free languages are the class of languages generated by contextfree
grammars. On the other hand, the regular languages are those generated by
regular context-free grammars.

Definition 2.4.7 (Regular context-free grammar). A regular context-free gram-
mar is a CFG G = (V,Σ, S, R) such that, for every rule X → β ∈ R, β ∈
Σ+(V ∪ {ε}).

In the above definition we assume that regular CFGs are right-regular, as
opposed to left-regular 3 CFGs. Both formalisms are equivalent as they both
describe the class of regular languages. Sometimes we refer to regular CFGs
simply as regular grammars.

Example 2.4.8. Consider the CFG G = ({X, Y, Z}, {a, b}, R,X) where the set
of rules R is given as:

X → aY

Y → aY | bZ | b
Z → bZ | b .

3Left-regular CFGs are context-free grammars such that, for every rule X → β ∈ R,
β ∈ (V ∪ {ε}) Σ+.

28

2.4. Grammars

First, note it is a regular CFG as no right-hand side of a rule contains more
than one variable, and if so, it occurs at the right of the terminal symbol. This
CFG generates the same regular language as the DFA from Figure 1.2, i.e.,
{anbm | n,m ≥ 1}. J

Finally, we recall the classical textbook translation procedure of a PDA into
a CFG [52] generating the same language that the PDA accepts by empty stack.

Definition 2.4.9 (Standard translation procedure from a PDA to a CFG).
Given a PDA P = (Q,Σ,Γ, δ, q0, Z0), define the G = (V,Σ, S, R) where:
• The set V of variables — often called the triples — is given by

{[qXq′] | q, q′ ∈ Q,X ∈ Γ} ∪ {S} . (2.1)

• The set R of production rules is given by

{S → [q0Z0q] | q ∈ Q}
∪ {[qXrd]→ b[q′(β)1r1] . . . [rd−1(β)drd]

| (q,X) ↪→b (q′, β), d = |β|, r1, . . . , rd ∈ Q}
(2.2)

For a proof of correctness, see Theorem 6.14 in [52]. The previous definition
easily translates into a conversion algorithm. Observe that the runtime of such
algorithm depends polynomially on |Q| and |Γ|, but exponentially on |β|.

2.4.1 Weighted case

We introduce the more general grammar model of weighted context-free gram-
mars, where a weight from a semiring is assigned to each rule of the grammar.
The notion of weight is extended from rules to parse trees by multiplying the
weights of the rules used along a tree, and from parse trees to words by adding
the weights of all the possible parse trees that yield to a word. Note that
WCFGs are a generalization of CFGs in the sense that every unweighted CFG,
as given in Definition 2.4.1, is a weighted context-free grammar with weights
over the Boolean semiring B.

Definition 2.4.10 (Weighted context-free grammar). A weighted context-free
grammar (WCFG) over the semiring (S,+, ·, 0S, 1S) is a pair (G,WG) where
G = (V,Σ, S, R) is a CFG and WG is a weight function defined as WG : R → S
that assigns a weight from the semiring S to each rule in R.

We will often omit the subscript of the weight function when it is clear from
the context. We extend the definition of W from rules to derivation sequences
by assigning to each derivation sequence ψ a weight which is the product of the
weights of the rules applied in ψ.

29

2. Preliminaries

Remark 2.4.11. In this dissertation we assume that the · operation of S is
commutative, i.e., we are interested in commutative semirings. Otherwise, the
weight of a derivation sequence would depend on the choice of the derivation
policy.

We define the weight of a parse tree τ = π(τ1, . . . , τn) inductively as follows:

W (τ)
def
= W (π) ·

n∏
i=1

W (τi) .

If n = 0, then W (τ)
def
= W (π).

We define TG, or simply T , as the set of all parse trees of a CFG G. Then,
we define the weight of a word w ∈ Σ as follows:

W (w)
def
=

∑
Y(τ)=w
τ∈T

W (τ) .

If for some w ∈ Σ∗, the set {τ | Y(τ) = w, τ ∈ T } = ∅ then W (w) = 0S.
Finally, we define the semantics of a WCFG (G,W) as the function JGKW :

Σ∗ → S such that JGKW (w)
def
= W (w).

Example 2.4.12. Recall the WCFG (G,W) given in Figure 1.4, where G =
({X}, {a}, R,X) and the weight function W : R→ N is given as:

X → aXX 1

X → a 1

Recall also that the weight of the word a5 is 2. Let us show here how to compute
it. First, a5 is the yield of 2 parse trees τ1 and τ2 in the grammar (see Figure 2.5).
The weight of each parse is W (τ1) = W (τ2) = 1, since the weight of every rule

X → aXX

X → aXX

X → a X → a

X → a

(a) Parse tree τ1.

X → aXX

X → a X → aXX

X → a X → a

(b) Parse tree τ2.

Figure 2.5: Parse trees that yield to a5.

is 1. Thus, the weight of the word a5 is W (a5) = W (τ1) +W (τ2) = 2. Since the
weight of each rule is 1, the weight of each word in this grammar corresponds
to the number of distinct trees that yield to that word, i.e., its ambiguity. J

Finally, we introduce equivalence relations and other related notions.

30

2.5. Equivalence Relations

2.5 Equivalence Relations

Given a nonempty set X, an equivalence relation ∼ on X is a binary relation
that is (i) reflexive: x ∼ x; (ii) symmetric: x ∼ y ⇒ y ∼ x; and (iii) transitive:
x ∼ y and y ∼ z ⇒ x ∼ z, for all x, y, z ∈ X.

Every equivalence relation ∼ induces a partition P∼ of X, i.e., a family
P∼

def
= {Bi}i∈I ⊆ ℘(X) of subsets of X, with I ⊆ N, such that: (i) Bi 6= ∅ for

all i ∈ I; (ii) Bi ∩Bj = ∅, for all i, j ∈ I with i 6= j; and (iii) X =
⋃
i∈I Bi.

We say that a partition is finite when I is finite. Then, if P∼ is a finite
partition, ∼ is an equivalence relation of finite index, i.e., ∼ describes a finite
number of equivalence classes. We will sometimes refer to equivalences of finite
index as finite equivalences. Given two equivalence relations ∼1, ∼2, we say
that ∼1 is finer or equal to ∼2 when ∼1 ⊆ ∼2. Sometimes, we also say that ∼2

is coarser or equal to ∼1.
Each Bi is called a block of the partition. Given u ∈ X, then P∼(u) denotes

the unique block that contains u and corresponds to the equivalence class u
w.r.t. ∼, P∼(u)

def
= {v ∈ X | u ∼ v}. This definition is naturally extended to

sets as follows. Given S ⊆ X, define P∼(S)
def
=
⋃
u∈S P∼(u). We say that the

congruence ∼ represents precisely S iff P∼(S) = S.
Finally, define Part(X) ⊆ ℘(X) as the set of partitions of X. We will use the

standard refinement ordering � between partitions: let P1, P2 ∈ Part(X), then
P1 is finer or equal to P2, denoted by P1 � P2, iff for every B1 ∈ P1, there exists
B2 ∈ P2 such that B1 ⊆ B2. Define the coarsest common refinement between P1

and P2, denoted by P1fP2, as the coarsest partition P ∈ Part(X) that is finer
than both P1 and P2. Similarly, define the finest common coarsening between
P1 and P2, denoted by P1 g P2, as the finest partition P that is coarser than
both P1 and P2. Recall that (Part(X),�,g,f) is a complete lattice where the
top (coarsest) element is {X} and the bottom (finest) element is {{x} | x ∈ X}.

In this dissertation, we will use equivalence relations over words, i.e., X
def
=

Σ∗. Specifically, we will define congruences of finite index and Parikh equiva-
lence.

2.5.1 Congruences

Definition 2.5.1 (Right and left congruences). An equivalence relation ∼ is
a right congruence iff for all u, v ∈ Σ∗, we have that u ∼ v ⇒ ua ∼ va, for
all a ∈ Σ. Similarly, an equivalence relation ∼ is a left congruence iff for all
u, v ∈ Σ∗, we have that u ∼ v ⇒ au ∼ av, for all a ∈ Σ.

We will denote right congruences by ∼r and left congruences by ∼`. In
the following lemma we give a characterization of right and left congruences in

31

2. Preliminaries

terms of their induced partitions.

Lemma 2.5.2. The following properties hold:

1. ∼r is a right congruence iff P∼r(v)u ⊆ P∼r(vu), for all u, v ∈ Σ∗.

2. ∼` is a left congruence iff uP∼`(v) ⊆ P∼`(uv), for all u, v ∈ Σ∗.

Proof.
1. ∼r is a right congruence iff P∼r(v)u ⊆ P∼r(vu), for all u, v ∈ Σ∗.

To simplify the notation, we denote P∼r , the partition induced by ∼r,
simply by P .
(⇒). Let x ∈ P (v)u, i.e., x = ṽu with P (ṽ) = P (v) (hence v ∼r ṽ).
Since ∼r is a right congruence and v ∼r ṽ then vu ∼r ṽu. Therefore,
x ∈ P (vu).
(⇐). By hypothesis, for each u, v ∈ Σ∗ and ṽ ∈ P (v), ṽu ∈ P (vu).
Therefore, v ∼r ṽ ⇒ ṽu ∼r vu.

2. ∼` is a left congruence iff uP∼`(v) ⊆ P∼`(uv), for all u, v ∈ Σ∗.
To simplify the notation, we denote P∼` , the partition induced by ∼`
simply by P .
(⇒). Let x ∈ uP (v), i.e., x = uṽ with P (ṽ) = P (v) (hence v ∼` ṽ).
Since ∼` is a left congruence and v ∼` ṽ then uv ∼` uṽ. Therefore,
x ∈ P (uv).
(⇐). By hypothesis, for each u, v ∈ Σ∗ and ṽ ∈ P (v), uṽ ∈ P (uv),
for all u ∈ Σ∗. Therefore, v ∼` ṽ ⇒ uṽ ∼` uv.

2.5.2 Parikh Equivalence

We first introduce the notion of Parikh image of a word. Broadly speaking, the
Parikh image of a word ignores the ordering of the symbols in its sequence, cap-
turing only the information given by the number of occurrence of each symbol.

Definition 2.5.3 (Parikh image of a word). Let Σ = {a1, . . . , an} be an alpha-
bet of symbols. The Parikh image of a word w over Σ, denoted by *w+, is the
vector (x1, . . . , xn) ∈ Nn where xi is the number of occurrences of the symbol
ai in w, for each i ∈ {1, . . . , n}.
Definition 2.5.4 (Parikh image of a language). Let Σ = {a1, . . . , an} be an
alphabet of symbols. The Parikh image of a language L ⊆ Σ∗, is defined as
*L+ def

= {*w+ | w ∈ L}.
Example 2.5.5. Consider the alphabet Σ = {a, b}. The Parikh image of
w = aba is the vector (2, 1), and the Parikh image of the language {anbn | n ≥ 1}
is the set {(n, n) | n ≥ 1}.

32

2.5. Equivalence Relations

J

Now we are ready to define the notion of Parikh equivalence.

Definition 2.5.6 (Parikh equivalence of words). Given two words w1, w2 ∈ Σ∗,
w1 is Parikh-equivalent to w2 iff *w1+ = *w2+.

Finally, we lift the definition of Parikh equivalence from words to languages
in a natural way.

Definition 2.5.7 (Parikh equivalence of languages). Given two languages L1, L2 ⊆
Σ∗, L1 is Parikh-equivalent to L2 iff *L1+ = *L2+.

Example 2.5.8. Consider the alphabet Σ = {a, b} again. The words aba and
baa are Parikh-equivalent since *aba+ = *baa+ = (2, 1), while aba and bab are
not, since *bab+ = (1, 2). On the other hand, the language L1 = {anbn | n ≥ 1}
and L2 = {(ab)n | n ≥ 1} are Parikh-equivalent languages, since *L2+ = {(n, n) |
n ≥ 1} = L1.

J

When we relax language-equivalence by Parikh-equivalence it turns out that
the class of context-free languages and the class of regular languages are equiv-
alent, in the sense that, every context-free language has the same Parikh image
as some regular language. This is a consequence of a classical theorem in the
Theory of Formal Languages proved in 1966 by Rohit Parikh [76].4

Theorem 2.5.9 (Parikh’s Theorem [76]). Every context-free language is Parikh-
equivalent to some regular language.

Note that the context-free language {anbn | n ≥ 1} is Parikh-equivalent to
the regular language {(ab)n | n ≥ 1}.

4More precisely, Parikh proved that the Parikh image of every context-free language is
semilinear. Since the Parikh image of every regular language is semilinear, the formulation
we give here is equivalent to the original result.

33

2. Preliminaries

34

3
FiniteAutomataConstructionsBased on

Congruences

In this chapter, we propose a framework of finite-state constructions based on
congruences of finite index over words to provide new insights on the connec-
tion between well-known methods for constructing the minimal deterministic
automaton of a language.

3.1 Introduction

The problem of building the deterministic finite-state automaton with the least
possible number of states recognizing a given regular language is a classical
issue that arises in many different areas in computer science such as program
verification, regular expression searching and natural language processing.

There exists a number of methods, such as Hopcroft’s [51] and Moore’s
algorithms [73], that receive as input a deterministic finite-state automaton
generating a language and build the minimal DFA for that language. In general,
these methods rely on computing a partition of the set of states of the input
DFA which is then used as the set of states of the minimal DFA.

On the other hand, Brzozowski [16] proposed the double-reversal method
for building the minimal DFA for the language generated by an input non-
deterministic automaton. This algorithm alternates a reverse operation and a
determinization operation twice, relying on the fact that, for any given NFA
N , if the reverse automaton of N is deterministic then the determinization
operation yields the minimal DFA for the language of N . This method has

35

3. Finite Automata Constructions Based on Congruences

been recently generalized by Brzozowski and Tamm [18].

Despite of the fact that all these approaches aim to compute Nerode’s equiv-
alence relation for the given language, it is evident that the double-reversal
method and its later generalization stand isolated from the state-partition-
based methods such as Hopcroft’s and Moore’s algorithm. This has lead to
different approaches to study the double-reversal method [25, 18, 87, 12] and
its connection with other minimization algorithms [20, 9, 1, 43].

In this chapter, we propose the use of left and right congruences over Σ∗ to
draw a connection between these independent techniques to build the minimal
DFA. We will require these congruences are of finite index, i.e., they define
finite partitions on Σ∗. Given a right (resp. left) congruence satisfying the
latter conditions and that represents precisely the language L, i.e., L is a union
of equivalence classes, we will adapt the well-known minimal DFA construction
based on right Nerode’s congruence to obtain a DFA (resp. co-DFA) recognizing
the language L [53, 19, 59].

Then, we will instantiate two particular right and left congruences. First,
we will define so-called right language-based congruences whose definition relies
on a regular language. This congruence is also known as the right Nerode’s
congruence. It is well-known [59] that applying our automata constructions to
the right language-based congruence w.r.t. a regular language L yields to an
automaton that is isomorphic to the minimal DFA for L. Second, we will define
the right automata-based congruences, whose definition is in terms of a finite
representation of the language, i.e., an NFA. Given an NFA N , our automata
construction applied to the automata-based congruence w.r.t. N yields to a
determinized version of N , in particular, it corresponds to the subset automata
construction for N . We will also give counterpart automata constructions for
the left language-based and the left automata-based congruences, that will yield
to the minimal co-DFA for the input language and a co-DFA for the input NFA,
respectively.

We will show that there exists a left-right duality between our left and right
congruences through the reverse operation on words. This left-right duality al-
lows us to interpret the double-reversal method in simple terms (see Figure 3.1).
It is worth to remark that this notion of duality has been observed before by
Courcelle et al. [25] through their geometrical perspective on the determiniza-
tion and minimization operations of finite-state automata, and similarly by
Bonchi et al. [12] in the context of algebras and coalgebras. Now we exploit
this duality to reformulate a sufficient and necessary condition that guarantees
that determinizing and automaton yields the minimal DFA [18], in terms of lan-
guage abstractions given by congruences. This formulation allows us to relate
the double-reversal method and Moore’s algorithm.

36

3.2. Automata Constructions From Congruences

3.1.1 Notation

Let us introduce some specific notation to this chapter. Given a language L ⊆
Σ∗ and a word u ∈ Σ∗, the left quotient of L by u is defined as the language
u−1L

def
= {w ∈ Σ∗ | uw ∈ L}. We sometimes refer to the left quotient of L

simply as quotient of L. Similarly, the right quotient of L by u is defined as the
language Lu−1 def

= {w ∈ Σ∗ | wu ∈ L}.
Given an NFA N , we say that a DFA for the language L(N) is the minimal,

denoted by NDM iff it has no unreachable states and no two states have the
same right language. The minimal DFA for a regular language is unique modulo
isomorphism.

Finally, recall that ND and NR denote the subset automata construction
(see Definition 2.3.3) and the reverse automata construction (Definition 2.3.4)
applied to the NFA N , respectively.

3.2 Automata Constructions From Congruences

Given a finite right congruence ∼r and a regular language L ⊆ Σ∗ such that ∼r
represents precisely L, i.e., P∼r(L) = L, the following automata construction
recognizes exactly the language L [19].

Definition 3.2.1 (Automata construction Hr(∼r, L)). Let ∼r be a right con-
gruence and let P∼r be the partition induced by ∼r. Let L ⊆ Σ∗ be a language.
Define the automaton Hr(∼r, L) = (Q,Σ, δ, I, F) where Q = {P∼r(u) | u ∈ Σ∗},
I = {P∼r(ε)}, F = {P∼r(u) | u ∈ L}, and δ(P∼r(u), a) = P∼r(v) iff P∼r(u)a ⊆
P∼r(v), for all u, v ∈ Σ∗ and a ∈ Σ.

Lemma 3.2.2. Let ∼r be a right congruence and let L ⊆ Σ∗ be a language such
that P∼r(L) = L. Then L(Hr(∼r, L)) = L.

Proof. To simplify the notation, we denote P∼r , the partition induced by
∼r, simply by P . Let H = Hr(∼r, L) = (Q,Σ, δ, I, F). First, we prove that

WH
I,P (u) = P (u), for each u ∈ Σ∗ . (3.1)

(⊆). We show that, for all w ∈ Σ∗, w ∈ WH
I,P (u) ⇒ w ∈ P (u). The

proof goes by induction on length of w.

• Base case: Let w = ε and ε ∈ WH
I,P (u). Note that the only initial

state of H is P (ε). Then, P (u) = δ(P (ε), ε), and thus P (u) = P (ε).
Hence, ε ∈ P (u).

37

3. Finite Automata Constructions Based on Congruences

Let w = a with a ∈ Σ and a ∈ WH
I,P (u) . Then, P (u) = δ(P (ε), a). By

Definition 3.2.1, P (ε)a ⊆ P (u). Therefore, a ∈ P (u).

• Inductive step: Now we assume by hypothesis of induction that, if
|w| = n (n > 1) then w ∈ WH

I,P (u) ⇒ w ∈ P (u). Let |w| = n + 1

and w ∈ WH
I,P (u). Assume w.l.o.g. that w = xa with x ∈ Σ∗ and

a ∈ Σ. Then, there exists a state q ∈ Q such that x ∈ WH
I,q and

P (u) = δ(q, a). Since x satisfies the induction hypothesis, we have
that x ∈ q, i.e., q denotes the state P (x). On the other hand, by
Definition 3.2.1, we have that P (x)a ⊆ P (u). Therefore, xa ∈ P (u).

(⊇). We show that, for all w ∈ Σ∗, w ∈ P (u) ⇒ w ∈ WH
I,P (u). Again, the

proof goes by induction on length of w.

• Base case: Let w = ε and ε ∈ P (u). Then, P (u) = P (ε). By
Definition 3.2.1, P (ε) is the initial state of H. Then, ε ∈ WH

I,P (ε).

Let w = a with a ∈ Σ and a ∈ P (u). Then P (u) = P (a). Since P is
a partition induced by a right congruence, by Lemma 2.5.2, we have
that P (ε)a ⊆ P (a). Therefore, by Definition 3.2.1, P (a) = δ(P (ε), a).
Since P (ε) is the initial state of H, we have that a ∈ WH

I,P (a), i.e.,

w ∈ WH
I,P (u).

• Inductive step: Now we assume by hypothesis of induction that, if
|w| = n (n > 1) then w ∈ P (u) ⇒ w ∈ WH

I,P (u). Let |w| = n + 1

and w ∈ P (u). Assume w.l.o.g. that w = xa with x ∈ Σ∗ and
a ∈ Σ. Then P (xa) = P (u). Since P is a partition induced by a right
congruence, by Lemma 2.5.2, we have that P (x)a ⊆ P (xa). Since
x ∈ P (x), by induction hypothesis, x ∈ WH

I,P (x). On the other hand,

by Definition 3.2.1, P (xa) = δ(P (x), a). Hence xa ∈ WH
I,P (xa), i.e.,

w ∈ WH
I,P (u).

38

3.2. Automata Constructions From Congruences

We conclude this proof by showing that L(H) = L.

L(H)

[Def. of L(H)] =
⋃
q∈F

WH
I,q

[Definition 3.2.1] =
⋃

P (w)∈Q
w∈L

WH
I,P (w)

[Equation (3.1)] =
⋃
w∈L

P (w)

[By hypothesis, P (L) = L] = L .

Now we give an automata construction for the language L that uses a finite
left congruence ∼` such that P∼`(L) = L.

Definition 3.2.3 (Automata construction H`(∼`, L)). Let ∼` be a left congru-
ence and let P∼` be the partition induced by ∼`. Let L ⊆ Σ∗ be a language.
Define the automaton H`(∼`, L) = (Q,Σ, δ, I, F) where Q = {P∼`(u) | u ∈ Σ∗},
I = {P∼`(u) | u ∈ L}, F = {P∼`(ε)}, and P∼`(v) ∈ δ(P∼`(u), a) iff aP∼`(v) ⊆
P∼`(u), for all u, v ∈ Σ∗ and a ∈ Σ.

Remark 3.2.4. Note that both Hr(∼r, L) and H`(∼`, L) are finite since we as-
sume ∼r and ∼` are of finite index. Hr(∼r, L) is also a complete deterministic
finite-state automaton since, for each u ∈ Σ∗ and a ∈ Σ, there exists exactly
one block P∼r(v) such that P∼r(u)a ⊆ P∼r(v), which is P∼r(ua). Furthermore,
observe that it possibly contains empty states but no state is unreachable.

On the other hand, H`(∼`, L) is a co-complete co-deterministic finite-state
automaton since, for each v ∈ Σ∗ and a ∈ Σ, there exists exactly one block
P∼`(u) such that aP∼`(v) ⊆ P∼`(u), which is P∼`(av). Finally, it possibly
contains unreachable states but no state is empty.

Lemma 3.2.5. Let ∼` be a left congruence and let L ⊆ Σ∗ be a language such
that P∼`(L) = L. Then L(H`(∼`, L)) = L.

Proof. To simplify the notation, we denote P∼` , the partition induced by
∼`, simply by P . Let H = H`(∼`, L) = (Q,Σ, δ, I, F). First, we prove that

WH
P (u),F = P (u), for each u ∈ Σ∗ . (3.2)

(⊆). We show that, for all w ∈ Σ∗, w ∈ WH
P (u),F ⇒ w ∈ P (u). The

proof goes by induction on length of w.

39

3. Finite Automata Constructions Based on Congruences

• Base case: Let w = ε and ε ∈ WH
P (u),F . Note that the only final state

of H is P (ε). Then, P (ε) ∈ δ(P (u), ε), and thus P (u) = P (ε). Hence,
ε ∈ P (u).

Let w = a with a ∈ Σ and a ∈ WH
P (u),F . Then, P (ε) ∈ δ(P (u), a).

By Definition 3.2.3, aP (ε) ⊆ P (u). Therefore, a ∈ P (u).

• Inductive step: Now we assume by hypothesis of induction that, if
|w| = n (n > 1) then w ∈ WH

P (u),F ⇒ w ∈ P (u). Let |w| = n + 1

and w ∈ WH
P (u),F . Assume w.l.o.g. that w = ax with a ∈ Σ and

x ∈ Σ∗. Then, there exists a state q ∈ Q such that x ∈ WH
q,F and

q ∈ δ(P (u), a). Since x satisfies the induction hypothesis, we have
that x ∈ q, i.e., q denotes the state P (x). On the other hand, by
Definition 3.2.3, we have that aP (x) ⊆ P (u). Therefore, ax ∈ P (u).

(⊇). We show that, for all w ∈ Σ∗, w ∈ P (u) ⇒ w ∈ WH
P (u),F . Again,

the proof goes by induction on length of w.

• Base case: Let w = ε and ε ∈ P (u). Then, P (u) = P (ε). By
Definition 3.2.1, P (ε) is the final state of H. Then, ε ∈ WH

P (u),F .

Let w = a with a ∈ Σ and a ∈ P (u). Then P (u) = P (a). Since P
is a partition induced by a left congruence, by Lemma 2.5.2, we have
that aP (ε) ⊆ P (a). Therefore, by Definition 3.2.3, P (ε) ∈ δ(P (a), a).
Since P (ε) is the final state of H, we have that a ∈ WH

P (a),F , i.e.,

w ∈ WH
P (u),F .

• Inductive step: Now we assume by hypothesis of induction that, if
|w| = n (n > 1) then w ∈ P (u) ⇒ w ∈ WH

P (u),F . Let |w| = n + 1

and w ∈ P (u). Assume w.l.o.g. that w = ax with a ∈ Σ and
x ∈ Σ∗. Then P (ax) = P (u). Since P is a partition induced by a
left congruence, by Lemma 2.5.2, we have that aP (x) ⊆ P (ax). Since
x ∈ P (x), by induction hypothesis, x ∈ WH

P (x),F . On the other hand,

by Definition 3.2.3, P (x) ∈ δ(P (ax), a). Hence ax ∈ WH
P (ax),F , i.e.,

w ∈ WH
P (u),F .

40

3.2. Automata Constructions From Congruences

We conclude this proof by showing that L(H) = L.

L(H)

[Def. of L(H)] =
⋃
q∈I

WH
q,F

[Definition 3.2.1] =
⋃

P (w)∈Q
w∈L

WH
P (w),F

[Equation (3.2)] =
⋃
w∈L

P (w)

[By hypothesis, P (L) = L] = L .

Next we show that, when ∼` and ∼r satisfy the notion of duality given by
Equation 3.3, the automata H` and Hr are one the reverse of the other.

Lemma 3.2.6. Let ∼r and ∼` be a right and left congruence respectively, and
let L ⊆ Σ∗ be a language. If the following property holds

u ∼r v ⇔ uR ∼` vR (3.3)

then Hr(∼r, L) is isomorphic to
(
H`(∼`, LR)

)R
.

Proof. Let Hr(∼r, L) = (Q,Σ, δ, I, F) and (H`(∼`, LR))R = (Q̃,Σ, δ̃, Ĩ , F̃).
We will show that Hr(∼r, L) and (H`(∼`, LR))R are isomorphic.

Let ϕ : Q → Q̃ be a mapping assigning to each state P∼r(u) ∈ Q with

u ∈ Σ∗, the state P∼`(uR) ∈ Q̃. We show that ϕ is an NFA isomorphism
between Hr(∼r, L) and (H`(∼`, LR))R.

The initial state P∼r(ε) of Hr(∼r, L) is mapped to P∼`(ε) which is the
final state of H`(∼`, LR), i.e., the initial state of (H`(∼`, LR))R.

Each final state P∼r(u) of Hr(∼r, L) with u ∈ L is mapped to P∼`(uR),
where uR ∈ LR. Therefore, P∼`(uR) is an initial state of H`(∼`, LR), i.e., a
final state of (H`(∼`, LR))R.

Now, note that, by Definition 3.2.3, H`(∼`, LR) is a co-DFA, therefore
(H`(∼`, LR))R is a DFA. Let us show that q′ = δ(q, a) if and only if ϕ(q′) =

δ̃(ϕ(q), a), for all q, q′ ∈ Q and a ∈ Σ. Assume that q = P∼r(u) for some
u ∈ Σ∗, and q′ = δ(q, a) with a ∈ Σ. By Definition 3.2.1, we have that
q′ = P∼r(ua). Then, ϕ(q) = P∼`(uR) and ϕ(q′) = P∼`(auR). Since ∼` is
a left congruence, using Lemma 2.5.2 we have that aP∼`(uR) ⊆ P∼`(auR).
Then, there is a transition in H`(∼`, LR) from state ϕ(q′) = P∼`(auR) to
state ϕ(q) = P∼`(uR) reading a. Hence, there exists the reverse transition

41

3. Finite Automata Constructions Based on Congruences

in (H`(∼`, LR))R, i.e., ϕ(q′) = δ̃(ϕ(q), a).

Assume now that q̃ = P∼`(uR) for some u ∈ Σ∗, and q̃′ = δ̃(q̃, a) with
a ∈ Σ. By Definition 3.2.3, we have that q̃′ = P∼`(auR). Consider a state
q ∈ Q such that ϕ(q) = q̃, then q is of the form P∼r(u). Likewise, consider
a state q′ ∈ Q such that ϕ(q′) = q̃′, then q′ is of the form P∼r(ua). Since
P∼r is a partition induced by a right congruence, using Lemma 2.5.2, we
have that P∼r(u)a ⊆ P∼r(ua), and thus q′ = δ(q, a).

3.3 Language-Based Congruences and Their Ap-

proximation Using NFAs

We instantiate two pairs of right and left congruences. First, we define the right
language-based congruence, also known as right Nerode’s congruence (e.g., see
[59]). We also give its left counterpart.

Definition 3.3.1 (Language-based congruence). Let u, v ∈ Σ∗ and let L ⊆ Σ∗

be a language. Define:

u ∼rL v
def⇔ u−1L = v−1L Right language-based congruence (3.4)

u ∼`L v
def⇔ Lu−1 = Lv−1 Left language-based congruence (3.5)

We give a proof of the fact that the equivalences defined above are indeed
congruences in Section 3.8 (Lemma 3.8.1). Recall that, when L is a regular
language, ∼rL and ∼`L are of finite index [19, 59]. Since we are interested in
congruences of finite index (or equivalently, finite partitions), we will always
assume that L is a regular language over Σ.

The following result states that, given a language L, the right Nerode’s
congruence induces the coarsest partition of Σ∗ which is a right congruence and
represents precisely L.

Lemma 3.3.2 (de Luca and Varricchio [27]). Let L ⊆ Σ∗ be a regular language.
Then,

P∼r
L

=
j
{P∼r | ∼r is a right congruence and P∼r(L) = L} .

In a similar way, one can prove that the same property holds for the left
Nerode’s congruence. Therefore, as we shall see, applying the construction H
to these equivalences yields minimal automata. However, computing them is
unpractical since languages are possibly infinite, even if they are regular. Thus,
we will consider congruences based on the states of the NFA representation of
the language, which induce finer partitions of Σ∗ than Nerode’s congruence. In

42

3.3. Language-Based Congruences and Their Approximation Using NFAs

this sense, we say that the automata-based congruences approximate Nerode’s
congruences.

Definition 3.3.3 (Automata-based congruences). Let u, v ∈ Σ∗ and let N =
(Q,Σ, δ, I, F) be an NFA. Define:

u ∼rN v
def⇔ postNu (I) = postNv (I) Right automata-based congruence (3.6)

u ∼`N v
def⇔ preNu (F) = preNv (F) Left automata-based congruence (3.7)

A proof of the fact that the equivalences defined above are indeed congru-
ences can be found in Section 3.8 (Lemma 3.8.2). Furthermore, they are of
finite index since each equivalence class corresponds to a subset of states of N .

The following lemma shows the relation between the automata-based and
the language-based congruences.

Lemma 3.3.4. Let N = (Q,Σ, δ, I, F) be an automaton with L = L(N).
Then, ∼rN ⊆ ∼rL.

Proof.

u ∼rN v

[Definition (3.6)] ⇔ postNu (I) = postNv (I)

⇒ WN
postNu (I),F = WN

postNv (I),F

[Def. of quotient of L] ⇔ u−1L = v−1L

[Definition (3.7)] ⇔ u ∼rL v .

In consequence, we give a sufficient and necessary condition for the right
language-based and the automata-based congruences to coincide.

Corollary 3.3.5. Let N = (Q,Σ, δ, I, F) be an automaton with L = L(N).
Then, the following conditions are equivalent:

1. ∼rL = ∼rN .

2. ∀u, v ∈ Σ∗, WN
postNu (I),F

= WN
postNv (I),F

⇔ postNu (I) = postNv (I).

3.3.1 Automata Constructions

In what follows, we will use Min and Det to denote the construction H when
applied, respectively, to the language-based congruences induced by a regular
language and the automata-based congruences induced by an NFA.

43

3. Finite Automata Constructions Based on Congruences

Definition 3.3.6. Let N be an NFA generating the language L = L(N).
Define:

Minr(L)
def
= Hr(∼rL, L) Detr(N)

def
= Hr(∼rN , L)

Min`(L)
def
= H`(∼`L, L) Det`(N)

def
= H`(∼`N , L) .

Given an NFA N generating the language L = L(N), all constructions in
the above definition yield automata generating L. However, while the con-
structions using the right congruences result in DFAs, the constructions relying
on left congruences result in co-DFAs. Furthermore, since the pairs of congru-
ences (3.4)-(3.5) and (3.6)-(3.7), from Definition 3.3.1 and 3.3.3 respectively, are
dual, i.e., they satisfy the hypothesis of Lemma 3.2.6, it follows that Min`(L) is
isomorphic to (Minr(LR))R and Det`(N) is isomorphic to (Detr(NR))R.

On the other hand, since Minr relies on the language-based congruences, the
resulting DFA is minimal, which is not guaranteed to occur with Detr. This
easily follows from the fact that the states of the automata constructions are the
equivalence classes of the given congruences and there is no right congruence,
representing L precisely, that is coarser than the right Nerode’s congruence (see
Lemma 3.3.2).

Finally, since every co-deterministic automaton (with no empty states) sat-
isfies the second condition of Corollary 3.3.5, it follows that determinizing
(Detr) a co-deterministic automaton (Det`(N)) results in the minimal DFA
(Minr(L(N))), as already proven by Sakarovitch [81, Proposition 3.13].

We formalize all these notions in Theorem 3.3.7. Finally, Figure 3.1 summa-
rizes all these well-known connections between the automata [4] constructions
given in Definition 3.3.6.

Theorem 3.3.7. Let N be an NFA generating language L = L(N). Then the
following properties hold:

1. L(Minr(L)) = L(Min`(L)) = L = L(Detr(N)) = L(Det`(N)).

2. Minr(L) is isomorphic to the minimal deterministic automaton for L.

3. Detr(N) is isomorphic to ND.

4. Min`(L) is isomorphic to (Minr(LR))R.

5. Det`(N) is isomorphic to (Detr(NR))R.

6. Detr(Det`(N)) is isomorphic to Minr(L).

Let us give a proof of this theorem.

44

3.3. Language-Based Congruences and Their Approximation Using NFAs

N Det`(N) Detr(Det`(N))

NR Detr(NR) Det`(Detr(NR))

R

Det`

Minr

R

Detr

R

Detr

Min`

Det`

The upper part of the diagram
follows from Theorem 3.3.7 (6).
Both squares of the diagram fo-
llow from Theorem 3.3.7 (5),
which states that Det`(N) is
isomorphic to (Detr(NR))R. Fi-
nally, the bottom curved arc fol-
lows from Theorem 3.3.7 (4).
Incidentally, the diagram shows
a new relation which follows
from the left-right dualities be-
tween ∼`L and ∼rL, and ∼`N and
∼rN : Min`(L(NR)) is isomor-
phic to Det`(Detr(NR)).

Figure 3.1: Relations between the constructions Det`,Detr,Min` and Minr. Note
that constructions Minr and Min` are applied to the language generated by the
automaton in the origin of the labeled arrow, while constructions Detr and Det`

are applied directly to the automaton.

Proof.

1. L(Minr(L)) = L(Min`(L)) = L = L(Detr(N)) = L(Det`(N)).

By Definition 3.3.6, Minr(L) = Hr(∼rL, L) and Detr(N) = Hr(∼rN , L).
By Lemma 3.2.2, L(Hr(∼rL, L)) = L = L(Hr(∼rN , L)). Thus, L(Minr(L)) =
Detr(N) = L. The proof of L(Min`(L)) = L = L(Det`(N)) goes sim-
ilarly using Lemma 3.2.5.

2. Minr(L) is isomorphic to the minimal deterministic automaton for L.
Let P be the partition induced by ∼rL. Recall that the automaton
Minr(L) = (Q,Σ, δ, I, F) is a complete DFA (see Remark 3.2.4). Re-

call also that the quotient DFA of L, defined as D = (Q̃,Σ, η, q̃0, F̃)

where Q̃ = {u−1L | u ∈ Σ∗}, η(u−1L, a) = a−1(u−1L) for each a ∈ Σ,

q̃0 = ε−1L = L and F̃ = {u−1L | ε ∈ u−1L}, is the minimal DFA for
L. We will show that Minr(L) is isomorphic to D.

Let ϕ : Q̃ → Q be the mapping assigning to each state q̃i ∈ Q̃ of
the form u−1L, the state P (u) ∈ Q, with u ∈ Σ∗. Note that, in

particular, if q̃i ∈ Q̃ is the empty set, then ϕ maps q̃i to the block
in P that contains all the words that are not prefixes of L. We show
that ϕ is a DFA isomorphism between D and Minr(L).

45

3. Finite Automata Constructions Based on Congruences

The initial state q̃0 = ε−1L of D is mapped to the state P (ε) which,
by definition, is the unique initial state of Minr(L). Each final state

u−1L ∈ F̃ is mapped to the state P (u) with u ∈ L which, by defini-
tion, is a final state of Minr(L).

We now show that q̃j = η(q̃i, a) if and only if ϕ(q̃j) = δ(ϕ(q̃i), a), for

all q̃i, q̃j ∈ Q̃, a ∈ Σ. Assume that q̃i = u−1L for some u ∈ Σ∗ and
q̃j = η(q̃i, a) where q̃j = a−1(u−1L) and a ∈ Σ. Note that a−1(u−1L) =
{x ∈ Σ∗ | uax ∈ L}. Then, ϕ(q̃i) = P (u) and ϕ(q̃j) = P (ua). Since
P is a partition induced by a right congruence, using Lemma 2.5.2,
we have that P (u)a ⊆ P (ua). Therefore, ϕ(q̃j) = δ(ϕ(q̃i), a).

Assume now that P (ua) = δ(P (u), a) for some u ∈ Σ∗ and a ∈ Σ.

Consider q̃i ∈ Q̃ such that ϕ(q̃i) = P (u), then q̃i = u−1L. Likewise,

consider q̃j ∈ Q̃ such that ϕ(q̃j) = P (ua), then q̃j = (ua)−1L =
a−1(u−1)L. Therefore, q̃j = η(q̃i, a).

3. Detr(N) is isomorphic to ND. Let N = (Q,Σ, δ, I, F). Recall that
ND denotes the DFA that results from applying the subset construc-
tion to N and removing all states that are not reachable. Thus, ND

possibly contains empty states but no state is [4] unreachable. Let

ND = (Qd,Σ, δd, {I}, Fd) and let Detr(N) = (Q̃,Σ, δ̃, Ĩ , F̃). Let P

be the partition induced by ∼rN and let ϕ : Q̃ → Qd be the map-

ping assigning to each state P (u) ∈ Q̃, the set postNu (I) ∈ Qd with
u ∈ Σ∗. Note that if u ∈ Σ∗ is not a prefix of L(N), then ϕ maps P (u)
to postNu (I) = ∅. We show that ϕ is a DFA isomorphism between
Detr(N) and ND.

The initial state of Detr(N), P (ε), is mapped to postNε (I) = {I}.
Therefore, ϕ maps the initial state of Detr(N) to the initial state of
ND. Each final state of Detr(N), P (u) with u ∈ L, is mapped to

postNu (I). Since postNu (I) ∩ F 6= ∅, postNu (I) ∈ F̃ .

Now note that, by Remark 3.2.4, Detr(N) is a complete DFA, and

by construction, so is ND. Let us show that q̃′ = δ̃(q̃, a) iff ϕ(q̃′) =

δd(ϕ(q̃), a), for all q̃, q̃′ ∈ Q̃ and a ∈ Σ. Assume that q̃ = P (u), for

some u ∈ Σ∗, and q̃′ = δ̃(q̃, a), with a ∈ Σ. By Definition 3.2.1,
we have that q̃′ = P (ua). Then, ϕ(q̃) = postNu (I) and ϕ(q̃′) =
postNua(I) = postNa (postNu (I)). Therefore, ϕ(q̃′) = δd(ϕ(q̃′), a).

Assume now that δd(postNu (I), a) = postNua(I). Consider q̃ ∈ Q̃ such

that ϕ(q̃) = postNu (I), then q̃ = P (u). Likewise, consider q̃′ ∈ Q̃
such that ϕ(q̃′) = postNua(I), then q̃′ = P (ua). Since P is a partition

46

3.3. Language-Based Congruences and Their Approximation Using NFAs

induced by a right congruence, using Lemma 2.5.2, we have that
P (u)a ⊆ P (ua). Therefore, q̃′ = δ̃(q̃, a).

4. Min`(L) is isomorphic to (Minr(LR))R. Note that, for each u ∈ Σ∗:

(u−1L)R = {xR ∈ Σ∗ | ux ∈ L}

= {xR ∈ Σ∗ | xRuR ∈ LR}
= {x′ ∈ Σ∗ | x′uR ∈ LR}
= LR(uR)−1 . (3.8)

Therefore,

u ∼`L v
[Definition (3.5)] ⇔ u−1L = v−1L

[x = y ⇔ xR = yR] ⇔ (u−1L)R = (v−1L)R

[Equation (3.8)] ⇔ LR(uR)−1 = LR(vR)−1

[Definition (3.4)] ⇔ uR ∼rLR v
R .

Finally, it follows from Lemma 3.2.6 that Min`(L) is isomorphic to
(Minr(LR))R.

5. Det`(N) is isomorphic to (Detr(NR))R. For each u, v ∈ Σ∗:

u ∼`NR v

[Definition 3.3.3] ⇔ preN
R

u (F) = preN
R

v (F)

[q ∈ preN
R

x (F)⇔ q ∈ postNxR(I)] ⇔ postNuR(I) = postNvR(I)

[Definition 3.3.3] ⇔ uR ∼`N vR .

It follows from Lemma 3.2.6 that Det`(N) is isomorphic to Detr(NR))R.

6. Detr(Det`(N)) is isomorphic to Minr(L).

By Theorem 3.3.7 (1), Det`(N) is a co-deterministic automaton gen-
erating the language L(N). Since Det`(N) is a co-DFA with no empty
states, it satisfies the second condition of Corollary 3.3.5. Therefore,
Detr(Det`(N)) is isomorphic to Minr(L(Det`(N))) = Minr(L(N)).

47

3. Finite Automata Constructions Based on Congruences

3.4 Congruences as Language Abstractions

In this section we use the right language-based congruence ∼rL as a language
abstraction to give a necessary and sufficient condition on an NFA so that
determinizing it yields the minimal DFA. More precisely, this condition asks
whether ∼rL represents precisely the left languages of the states of the NFA.
First, we give a preliminary result.

Lemma 3.4.1. Let N = (Q,Σ, δ, I, F) be an NFA with L = L(N) and ∼rL=∼rN .
Then ∀q ∈ Q, P∼r

L
(WN

I,q) = WN
I,q.

Proof.

P∼r
L
(WN

I,q)

[Def. of P∼r
L
(WN

I,q)] = {w ∈ Σ∗ | ∃u ∈ WN
I,q, w

−1L = u−1L}
[∼rL=∼rN] = {w ∈ Σ∗ | ∃u ∈ WN

I,q, postNw (I) = postNu (I)} .

Since, for all u ∈ Σ∗ and q ∈ Q: u ∈ WN
I,q ⇔ q ∈ postNu (I), we have the

following set inclusion:

{w ∈ Σ∗ | ∃u ∈ WN
I,q, postNw (I) = postNu (I)}

⊆ {w ∈ Σ∗ | q ∈ postNw (I)}
[Def. of WN

I,q] = WN
I,q .

By reflexivity of ∼rL, we conclude that P∼r
L
(WN

I,q) = WN
I,q.

Theorem 3.4.2. Let N = (Q,Σ, δ, I, F) be an NFA with L = L(N). Then
Detr(N) is the minimal DFA for L iff ∀q ∈ Q, P∼r

L
(WN

I,q) = WN
I,q.

Proof. Assume Detr(N) is minimal. Then P∼r
N

(u) = P∼r
L
(u) for all u ∈

Σ∗, i.e. ∼rL = ∼rN . It follows from Lemma 3.4.1 that P∼r
L
(WN

I,q) = WN
I,q.

Now, assume that P∼r
L
(WN

I,q) = WN
I,q, for each q ∈ Q. Then, for every

u ∈ Σ∗,

P∼r
N

(u)

[Def. of P∼r
N

] = {v ∈ Σ∗ | postNu (I) = postNv (I)}
= {v ∈ Σ∗ | ∀q ∈ Q : q ∈ postNu (I)⇔ q ∈ postNv (I)}

48

3.5. A Congruence-Based Perspective on Known Algorithms

[q ∈ postNv ⇔ v ∈ WN
I,q] = {v ∈ Σ∗ | ∀q ∈ Q : q ∈ postNu (I)⇔ v ∈ WN

I,q}

[Def. of intersection] =
⋂

q∈postNu (I)

WN
I,q ∩

⋂
q /∈postNu (I)

(WN
I,q)

c

[P∼r
L
(WN

I,q) = WN
I,q] =

⋂
q∈postNu (I)

P∼r
L
(WN

I,q) ∩
⋂

q /∈postNu (I)

(P∼r
L
(WN

I,q))
c .

From the last equality we conclude that P∼r
N

(u) is a union of blocks
of P∼r

L
. Recall that ∼rL induces the coarsest right congruence such that

P∼r
L
(L) = L (Lemma 3.3.2). Since ∼rN is a right congruence satisfying

P∼r
N

(L) = L then P∼r
N
⊆ P∼r

L
. Thus, P∼r

N
(u) necessarily corresponds to

one single block of P∼r
L
, namely, P∼r

L
(u). Since P∼r

N
(u) = P∼r

L
(u) for each

u ∈ Σ∗, we conclude that Detr(N) = Minr(L).

3.5 A Congruence-Based Perspective on Known

Algorithms

There exist several well-known independent techniques for the construction of
minimal DFAs in the literature. Some of these methods are based on refining a
state partition of an input DFA, such as Moore’s algorithm [73], while others di-
rectly manipulate an input NFA, such as the double-reversal method [16]. Now,
we establish a connection between these algorithms through Theorem 3.4.2.

We start with the double-reversal algorithm.

3.5.1 Double-Reversal Method

We give a simple proof of the well-known double-reversal minimization algo-
rithm of Brzozowski [16] using Theorem 3.4.2. Note that, since Detr(N) is
isomorphic to ND by Theorem 3.3.7 (3), the following result coincides with
that of Brzozowski.

Theorem 3.5.1 (from [16]). Let N be an NFA. Then Detr((Detr(NR))R) is
isomorphic to the minimal DFA for L(N).

Proof. Let L = L(N). By definition, N ′ = (Detr(NR))R is a co-DFA with
no empty states, and therefore it satisfies the second condition of Corol-
lary 3.3.5. Note that in, the latter condition, the right-to-left implication
always holds since ∼rN ′ ⊆ ∼rL(N ′). Now, let us look at the left-to-right im-

plication. Note that N ′ has no empty states, and thus if u−1L = v−1L = ∅
then postN

′
u (I) = postN

′
v (I) = ∅. On the other hand, assume that there

49

3. Finite Automata Constructions Based on Congruences

exists u, v ∈ Σ∗ with u−1L = v−1L 6= ∅ and postN
′

u (I) 6= postN
′

v (I).
W.l.o.g. assume that there exist qu ∈ (postN

′
u (I) ∩ (postN

′
v (I))c) and qv ∈

(postN
′

v (I) ∩ (postN
′

u (I))c). Let qf be the unique final state of N ′. Since
u−1L = v−1L 6= ∅, there is w ∈ u−1L such that qu, qv ∈ prew({qf}), which
contradicts the fact that N ′ is a co-DFA. Therefore, ∼rL(N ′) ⊆ ∼rN ′ .

It follows that ∼rL(N ′) = ∼rL(N ′) which, by Lemma 3.4.1 and Theo-

rem 3.4.2, implies that Detr(N ′) is minimal.

Observe that Theorem 3.5.1 can be inferred from Figure 3.1 by following the
path starting at N , labeled with R−Detr−R−Detr and ending in Minr(L(N)).

3.5.2 Simulation-Based Double-Reversal Method

Relying on the fact that determinizing a co-DFA (with no empty states) yields
to the minimal DFA, the double-reversal method determinizes the automaton
(Detr(NR))R to obtain the minimal DFA for L(N). Next theorem extends this
method to any left congruence that precisely represents L(N).

Theorem 3.5.2. Let N be an NFA with L = L(N), and let ∼` be a left
congruence such that P∼`(L) = L. Then Detr(H`(∼`,L(N))) is isomorphic to
the minimal DFA for L(N).

Proof. By construction, H`(∼`, L) is a co-DFA with no empty states for
L. The remainder of the proof follows that of Theorem 3.5.1.

In view of the latter result, we will propose a congruence which is coarser
than (or equal to) the automata-based congruence, and thus yields to a double-
reversal method that produces an intermediate co-DFA with fewer (or equal
number of) states than Brzozowski’s method. To this aim, let us first define
the notion of forward and backward simulation. Recall that a quasiorder on a
set X is a reflexive and transitive binary relation (not necessarily symmetric)
over X.

Definition 3.5.3 (Forward simulation relation). Given an NFAN = (Q,Σ, δ, I, F),
a forward simulation on N is a quasiorder→ ⊆ Q×Q such that if q → q′ then:

1. q ∈ F implies q′ ∈ F ;

2. for every p ∈ δ(q, a), there exists p′ ∈ δ(q′, a) such that p→ p′.

Definition 3.5.4 (Backward simulation relation). Given an NFAN = (Q,Σ, δ, I, F),
a backward simulation on N is a quasiorder ← ⊆ Q × Q such that if q ← q′

then:

50

3.5. A Congruence-Based Perspective on Known Algorithms

1. q ∈ I implies q′ ∈ I;

2. for every q ∈ δ(p, a), there exists q′ ∈ δ(p′, a) such that p← p′.

We extend the definition of forward simulation from Q to ℘(Q) as follows.
Let S, T ⊆ Q then S → T iff ∀q ∈ S ∃q′ ∈ T s.t. q → q′. Similarly, the
definition of backward simulation can be extended from Q to ℘(Q) as follows.
Let S, T ⊆ Q then S ← T iff ∀q ∈ S ∃q′ ∈ T s.t. q ← q′.

We will define our right (resp. left) congruence as the one induced by the
intersection of a right (resp. left) quasiorder and its inverse. This way, using
the notion of simulation, we define the right simulation-based quasiorder 4r→
on Σ∗ and its left counterpart as follows.

Definition 3.5.5 (Simulation-based quasiorders). Let u, v ∈ Σ∗,
N = (Q,Σ, δ, I, F) be an NFA and → and ← be a forward and a backward
simulation on N , respectively. Define:

u 4r→ v
def⇔ postNu (I)→ postNv (I) Right simulation-based quasiorder

u 4`← v
def⇔ preNu (F)← preNv (F) Left simulation-based quasiorder

Note that a quasiorder 4 and its inverse (4)−1 induces the congruence

∼ def
= 4 ∩ (4)−1. In this way, we define our simulation-based congruences in

terms of the simulation-based quasiorders.

Definition 3.5.6 (Simulation-based congruences). Let u, v ∈ Σ∗,
N = (Q,Σ, δ, I, F) be an NFA and → and ← be a forward and a backward
simulation on N . Define:

u ∼r→ v
def⇔ postNu (I)→ postNv (I) ∧ Right simulation-based congruences

postNv (I)→ postNu (I)

u ∼`← v
def⇔ preNu (F)← preNv (F) ∧ Left simulation-based congruences

preNv (F)← preNu (F)

We give a proof of the fact that the equivalences defined above are a right
and a left congruence, respectively, that precisely represent the language L(N)
in Lemma 3.8.3.

The following result shows the relations between the simulation-based con-
gruence and the congruences we defined in the previous section.

Lemma 3.5.7. Let N be an automaton with L = L(N), and let → and ← be
a forward and backward simulation on N , respectively. Then,

1. ∼rN ⊆ ∼r→ ⊆ ∼rL, and

2. ∼`N ⊆ ∼`← ⊆ ∼`L .

51

3. Finite Automata Constructions Based on Congruences

Proof. We will prove statement 1. (statement 2. goes similarly). First, we
prove that ∼rN ⊆ ∼r→. By definition, u ∼rN v iff postNu (I) = postNv (I), with
u, v ∈ Σ∗. Therefore, we have that postNu (I) → postNv (I) and postNu (I) ←
postNv (I) when → and ← are both defined by the equality =.

Now, we prove ∼r→ ⊆ ∼rL. First, we prove that if q → q′ then WN
q,F ⊆

WN
q′,F . Recall that q → q′ implies that: (i) q ∈ F then q′ ∈ F ; (ii) for every

p ∈ δ(q, a), there exists p′ ∈ δ(q′, a) such that p → p′. If w ∈ WN
q,F then

there exists p ∈ F such that p ∈ postNw (q). Since q → q′, using condition
(i), there exists p′ ∈ postNw (q′) with p′ → p, and thus p′ ∈ F . Therefore,
w ∈ WN

q′,F .

By the previous result, we have that the condition postNu (I)→ postNv (I)
and postNv (I) → postNu (I) implies: WN

postNu (I),F
= WN

postNv (I),F
. Therefore,

since WN
postNu (I)

= WN
postNv (I)

⇔ u−1L = v−1L , we have that postNu (I) →
postNv (I) and postNv (I) → postNu (I) implies that u−1L = v−1L. We thus
conclude that ∼r→ ⊆ ∼rL.

Note that ∼r→ is a finite-index congruence since ∼rN ⊆ ∼r→ and ∼rN is of
finite index. The same holds for its left counterpart. Let us define the construc-
tions Hr and H` when applied to a right and left simulation-based congruence,
respectively, as follows.

Definition 3.5.8. Let N be an NFA with L = L(N) and let → and ← be a
forward and backward simulation on N , respectively. Define:

Simr(N ,→)
def
= Hr(∼r→, L) Sim`(N ,←)

def
= H`(∼`←, L) .

The following result is a consequence of Theorem 3.5.2.

Corollary 3.5.9. Let N be an NFA with L = L(N), and let → be a forward
simulation on NR. Then, Detr(Simr(NR,→)R) is isomorphic to the minimal
DFA for L(N).

Note that, relying on Lemma 3.2.6, Detr(Simr(NR,→)R) is isomorphic to
Detr(Sim`(N ,←)). Below these lines we show an example of an NFA N for
which the co-DFA Simr(→,NR)R, for a given forward simulation →, has fewer
states than the co-DFA Detr(NR)R.

Example 3.5.10. For the sake of clarity, we give directly the NFA NR (in-
stead of N) in Figure 3.2a. Let us define the forward simulation → on NR

as → def
= {(1, 2), (2, 1), (3, 4)}, where we have omitted the pairs (i, i) for each

i ∈ {0, . . . , 4}, for simplicity. Figure 3.2b shows the DFA Detr(NR). Intu-
itively, its states correspond to all subsets of reachable states of NR of the

52

3.5. A Congruence-Based Perspective on Known Algorithms

form postNu (I), for all u ∈ Σ∗. On the other hand, Figure 3.2c shows the
DFA Simr(NR,→). In this case, its states are all subsets of reachable states
of NR where we have merged those subsets postNu (I) and postNv (I) such that
postNu (I) → postNv (I) and postNv (I) → postNu (I), for each u, v ∈ Σ∗. Note
that Simr(NR,→) has 2 fewer states than Detr(NR). When reversing both
DFAs and applying Detr construction, the resulting (minimal) DFAs will be
isomorphic.

J

3.5.3 Generalization of the Double-Reversal Method

Brzozowski and Tamm [18] generalized the double-reversal algorithm by defin-
ing a necessary and sufficient condition on an NFA which guarantees that the
determinized automaton is minimal. They introduced the notion of atoms of the
language and the so-called atomic NFAs, and showed thatND is minimal iffNR

is atomic.1 We will show that this result is equivalent to Theorem 3.4.2 due to
the left-right duality between the language-based equivalences (Lemma 3.2.6).
We recall here the definition of atom and atomic NFA.

Definition 3.5.11 (Atom [18]). Let L be a regular language L. Let {Ki |
0 ≤ i ≤ n − 1} be the set of left quotients of L. An atom is any non-empty

intersection of the form K̃0∩ K̃1∩ . . .∩ K̃n−1, where each K̃i is either Ki or Kc
i .

The notion of atom coincides with that of equivalence class for the left
language-based congruence ∼`L. This was first noticed by Iván [57].

Lemma 3.5.12. Let L be a regular language. Then for every u ∈ Σ∗,

P∼`
L
(u) =

⋂
u∈w−1L
w∈Σ∗

w−1L ∩
⋂

u/∈w−1L
w∈Σ∗

(w−1L)c .

Proof. For each u ∈ Σ∗, define Lu =
⋂

u∈w−1L
w∈Σ∗

w−1L
⋂

u/∈w−1L
w∈Σ∗

(w−1L)c. First,

we show that P∼`
L
(u) ⊆ Lu, for each u ∈ Σ∗. Let v ∈ P∼`

L
(u), i.e., Lu−1 =

Lv−1. Then, for each w ∈ Σ∗, u ∈ w−1L ⇔ wu ∈ L ⇔ w ∈ Lu−1 ⇔
w ∈ Lv−1 ⇔ v ∈ w−1L. Therefore, ∀v ∈ P∼`

L
(u), v ∈ Lu, and thus

P∼`
L
(u) ⊆ Lu.

Next, we show that Lu ⊆ P∼`
L
(u). Let v ∈ Lu. Then, ∀w ∈ Σ∗,

u ∈ w−1L ⇔ v ∈ w−1L. It follows that w ∈ Lu−1 ⇔ w ∈ Lv−1, and

1A shorter version of these results was previously presented in [17].

53

3. Finite Automata Constructions Based on Congruences

0 1

2

3

4

a, b

b

a

b

a, b
b

a, b

a, b

(a) NFA NR.

{0} {1}

{1, 2}

{3}

{3, 4}

{4}

a

b

a

b

a

b

a, b

a, b

a, b

(b) DFA Detr(NR).

{0} {1} {3}

{3, 4}

a, b a

b

a, b

a, b

(c) DFA Simr(NR,→). Since the pairs (1, 1) and (2, 1) ∈→, then {1} = postN
R

a (I)→
postN

R

b = {1, 2} and {1, 2} = postN
R

b (I) → postN
R

a = {1}, and thus a ∼r→ b.
As a result, states {1} and {1, 2} of Detr(NR) are merged into the state {1} in
Simr(NR,→). Note that, since (4, 3) /∈ → we cannot merge states {3}, {4} and
{3, 4}.

Figure 3.2: NFA NR and DFAs Detr(NR) and Simr(NR,→).

therefore v ∈ P∼`
L
(u).

Definition 3.5.13 (Atomic NFA [18]). An NFA N = (Q,Σ, δ, I, F) is atomic
iff for every state q ∈ Q, the right language WN

q,F is a union of atoms of L(N).

54

3.5. A Congruence-Based Perspective on Known Algorithms

Remark 3.5.14. Observe that a set S ⊆ Σ∗ is a union of atoms iff P∼`
L
(S) = S.

Then, an NFA N = (Q,Σ, δ, I, F) with L = L(N) is atomic iff for every state
q ∈ Q, P∼`

L
(WN

q,F) = WN
q,F .

Similarly, we characterize the equivalence classes of the right [4] language-
based congruence ∼rL as nonempty intersections of complement or uncomple-
mented right quotients.

Lemma 3.5.15. Let L be a regular language. Then, for every u ∈ Σ∗,

P∼r
L
(u) =

⋂
u∈Lw−1

w∈Σ∗

Lw−1 ∩
⋂

u/∈Lw−1

w∈Σ∗

(Lw−1)c .

Proof. For each u ∈ Σ∗, let Lu =
⋂

u∈Lw−1

w∈Σ∗

Lw−1
⋂

u/∈Lw−1

w∈Σ∗

(Lw−1)c. First, we

show that P∼r
L
(u) ⊆ Lu, for each u ∈ Σ∗. Let v ∈ P∼r

L
(u), i.e., u−1L =

v−1L. Then, for each w ∈ Σ∗, u ∈ Lw−1 ⇔ uw ∈ L ⇔ w ∈ u−1L ⇔ w ∈
v−1L⇔ v ∈ Lw−1. Thus, ∀v ∈ P∼r

L
(u), v ∈ Lu, i.e., P∼r

L
(u) ⊆ Lu.

Next, we show that Lu ⊆ P∼r
L
(u). Let v ∈ Lu. Then, ∀w ∈ Σ∗,

u ∈ Lw−1 ⇔ v ∈ Lw−1. Therefore w ∈ u−1L⇔ w ∈ v−1L, i.e., v ∈ P∼r
L
(u).

Along the lines of the notion of atom, we coin the equivalence classes of ∼rL
co-atoms. Thus, we define a co-atomic NFA as follows.

Definition 3.5.16 (Co-atomic NFA). An NFA N = (Q,Σ, δ, I, F) is co-atomic
iff for every state q ∈ Q, the left language WN

I,q is a union of co-atoms of L(N).

We are now in condition to give an alternative proof of the generalization of
Brzozowski and Tamm [18] relying on Theorem 3.4.2.

Lemma 3.5.17. Let N = (Q,Σ, δ, I, F) be an NFA with L = L(N). Then NR

is atomic iff Detr(N) is the minimal DFA for L.

Proof. Let NR = (Q,Σ, δr, F, I) and LR = L(NR). By Remark 3.5.14,

∀q ∈ Q, P∼`
LR

(WNR

q,I) = WNR

q,I

[A = B ⇔ AR = BR] ⇔ ∀q ∈ Q,
(
P∼`

LR
(WNR

q,I)
)R

=
(
WNR

q,I

)R
[u ∼`L v ⇔ uR ∼rLR v

R] ⇔ ∀q ∈ Q, P∼r
L

((
WNR

q,I

)R)
=
(
WNR

q,I

)R
[
(
WNR

q,I

)R
= WN

I,q] ⇔ ∀q ∈ Q, P∼r
L
(WN

I,q) = WN
I,q .

55

3. Finite Automata Constructions Based on Congruences

It follows from Theorem 3.4.2 that Detr(N) is minimal.

In view of the notion of co-atomic NFA and the above result, the sufficient
and necessary condition by Brzozowski and Tamm [18] can be formulated as
follows.

Corollary 3.5.18. Let N = (Q,Σ, δ, I, F) be an NFA with L = L(N). Then
N is co-atomic iff Detr(N) is the minimal DFA for L.

We conclude this section by compiling all the conditions described so far
that guarantee that determinizing an automaton yields the minimal DFA.

Corollary 3.5.19. Let N = (Q,Σ, δ, I, F) be an NFA with L = L(N). The
following conditions are equivalent:

1. Detr(N) is minimal.

2. ∼rN = ∼rL.

3. ∀u, v ∈ Σ∗, WN
postNu (I),F

= WN
postNv (I),F

⇔ postNu (I) = postNv (I).

4. ∀q ∈ Q, P∼r
L
(WN

I,q) = WN
I,q.

5. NR is atomic.

6. N is co-atomic.

3.5.4 Moore’s Algorithm

Given a DFA D, Moore [73] builds the minimal DFA for the language L =
L(D) by removing unreachable states from D and then performing a stepwise
refinement of an initial partition of the set of reachable states. Since we are
interested in the refinement step, in what follows we assume that all DFAs have
no unreachable states.

In this section, we will describe Moore’s state-partition QD and the right
language-based partition P∼r

L
as greatest fixpoint computations and show that

there exists an isomorphism between the two at each step of the fixpoint com-
putation. In fact, this isomorphism shows that the output DFA M of Moore’s
algorithm satisfies P∼r

L
(WM

I,q) = WM
I,q, for every state q. Thus, by Theorem 3.4.2,

M is isomorphic to the minimal DFA for L.
First, we give Moore’s algorithm which computes the state-partition that is

later used to define Moore’s DFA.

Definition 3.5.20 (Moore’s DFA). Let D = (Q,Σ, δ, I, F) be a DFA, and
let QD be the output state-partition of Moore’s algorithm. Moore’s DFA for
L(D) is M = (QM ,Σ, δM , IM , FM) where QM = QD, IM = {QD(q) | q ∈ I},
FM = {QD(q) | q ∈ F} and, for each S, S ′ ∈ QM and a ∈ Σ, we have that
δM(S, a) = S ′ iff ∃q ∈ S, q′ ∈ S ′ with δ(q, a) = q′.

56

3.5. A Congruence-Based Perspective on Known Algorithms

Moore’s Algorithm: Algorithm that builds Moore’s partition.

Data: DFA D = (Q,Σ, δ, I, F) with L = L(D).
Result: QD ∈ Part(Q).

1 QD := {F, F c}, Q′ := ∅;
2 while QD 6= Q′ do
3 Q′ := QD;
4 forall a ∈ Σ do
5 Qa :=

c
p∈QD{preDa (p), (preDa (p))c};

6 QD := QD f
c
a∈ΣQa;

7 return QD;

Next, we describe Moore’s state-partition QD and the right [4] language-
based partition P∼r

L
as greatest fixpoint computations and show that there exists

an isomorphism between the two at each step of the fixpoint computation.

Definition 3.5.21 (Moore’s state-partition). Let D = (Q,Σ, δ, I, F) be a DFA.
Define Moore’s state-partition w.r.t. D, denoted by QD, as follows.

QD def
= gfp(λX.

k

a∈Σ,S∈X

{prea(S), (prea(S))c}f {F, F c}) .

By Theorem 3.3.7 (2), each state of the minimal DFA for L corresponds
to an equivalence class of ∼rL. Relying on Lemma 3.5.15, these equivalence
classes can be defined in terms of non-empty intersections of complemented or
uncomplemented right quotients of L. In other words,

P∼r
L

=
k

w∈Σ∗

{Lw−1, (Lw−1)c} ,

for every regular language L . Thus, P∼r
L

can also be obtained as a greatest
fixpoint computation as follows. We defer a proof of this result to Section 3.8.

Lemma 3.5.22. Let L be a regular language. Then

P∼r
L

= gfp(λX.
k

a∈Σ,B∈X

{Ba−1, (Ba−1)c}f {L,Lc}) . (3.9)

Now we show that, given a DFA D with L = L(D), there exists a partition
isomorphism between QD and P∼r

L
at each step of the fixpoint computations

given in Definition 3.5.21 and Lemma 3.5.22 respectively.

Theorem 3.5.23. Let D = (Q,Σ, δ, I, F) be a DFA with L = L(D) and let

ϕ : ℘(Q) → ℘(Σ∗) be a function defined by ϕ(S)
def
= WD

I,S. Let QD(n) and P
(n)
∼r

L

57

3. Finite Automata Constructions Based on Congruences

be the n-th step of the fixpoint computation of QD (Definition 3.5.21) and P∼r
L

(Lemma 3.5.22), respectively. Then, ϕ is an isomorphism between QD(n) and

P
(n)
∼r

L
for each n ≥ 0.

Proof. In order to show that ϕ is a partition isomorphism, it suffices to
prove that ϕ is a bijective mapping between the partitions. We first show
that ϕ(QD(n)) = P

(n)
∼r

L
, for every n ≥ 0. Thus, the mapping ϕ is surjec-

tive. Secondly, we show that ϕ is an injective mapping from QD(n) to P
(n)
∼r

L
.

Therefore, we conclude that ϕ is a bijection.
To show that ϕ(QD(n)) = P

(n)
∼r

L
, for each n ≥ 0, we proceed by induction.

• Base case: By definition, QD(0) = {F, F c} and P
(0)
∼r

L
= {L,Lc}. Since

D is deterministic (and complete), it follows that ϕ(F) = WD
I,F = L

and ϕ(F c) = WD
I,F c = Lc.

• Inductive step: Before proceeding with the inductive step, we show
that the following equations hold for each a, b ∈ Σ and S, Si, Sj ∈
QD(n) with n ≥ 0:

ϕ(prea(S)c) = ((WD
I,S)a−1)c (3.10)

ϕ(prea(Si) ∩ preb(Sj)) = (WD
I,Si

)a−1 ∩ (WD
I,Sj

)b−1 . (3.11)

For each S ∈ QD(n) and a ∈ Σ we have the following. Note that, in
cases where the equality between sets holds by definition, we simply
omit the reasoning (between brackets).

ϕ(prea(S)c)

= WD
I,prea(S)c

= {w ∈ Σ∗ | ∃q ∈ prea(S)c, q = δ̂(q0, w)}
=† {w ∈ Σ∗ | ∃q ∈ prea(S), q = δ̂(q0, w)}c

= {w ∈ Σ∗ | ∃q ∈ S, q = δ̂(q0, wa)}c

= ((WD
I,S)a−1)c ,

where the equality marked with † holds since D is a (complete) DFA.

Therefore, Equation (3.10) holds at each step of the fixpoint compu-
tation. Consider now Equation (3.11). Let Si, Sj ∈ QD(n). Then,

58

3.5. A Congruence-Based Perspective on Known Algorithms

equals to:

ϕ(prea(Si) ∩ preb(Sj))

= WD
I,(prea(Si)∩preb(Sj))

= {w ∈ Σ∗ | ∃q ∈ prea(Si) ∩ preb(Sj), q = δ̂(q0, w)}
= {w ∈ Σ∗ | ∃q ∈ prea(Si), q ∈ preb(Sj), q = δ̂(q0, w)}
=† WD

I,prea(Si)
∩WD

I,preb(Sj)

= (WD
I,Si

)a−1 ∩ (WI,Sj
)b−1 ,

where equality † holds since D is a DFA. Therefore, Eq. (3.11) holds
at each step of the fixpoint computation.

Assume that ϕ
(
QD(n)

)
= P

(n)
∼r

L
for every n ≤ k (k > 0).

Then,

ϕ
(
QD(k+1)

)
[Definition 3.5.21] = ϕ

(k

a∈Σ
S∈X

{prea(S), prea(S)c}f {F, F c}
)

[Eqs. (3.10), (3.11)] =
k

a∈Σ
ϕ(S)∈ϕ(X)

{(WD
I,S)a−1, ((WD

I,S)a−1)
c}f {L,Lc}

[I.H., ϕ(X) = P
(k)
∼r

L
] =

k

a∈Σ,B∈X′
{Ba−1, (Ba−1)

c}f {L,Lc}

[Lemma 3.5.22] = P
(k+1)
∼r

L
.

Note that in the first equality X
def
= QD(k), and in the last equality

X ′
def
= P

(k)
∼r

L
. Finally, since D is a DFA then, for each Si, Sj ∈ QD(n)(n ≥ 0)

with Si 6= Sj we have that WD
I,Si
6= WD

I,Sj
, i.e., ϕ(Si) 6= ϕ(Sj). Therefore, ϕ

is an injective mapping.

Corollary 3.5.24. Let D be a DFA with L = L(D). Let QD(n) and P
(n)
∼r

L
be the

n-th step of the fixpoint computation of QD and P∼r
L

, respectively. Then, for
each n ≥ 0,

P
(n)
∼r

L
(WD

I,S) = WD
I,S , for each S ∈ QD(n) .

It follows that Moore’s DFA M , whose set of states corresponds to the state-
partition at the end of the execution of Moore’s algorithm, satisfies that, for
each q ∈ QM , P∼r

L
(WM

I,q) = WM
I,q with L = L(M). Finally, by Theorem 3.4.2,

we have that Detr(M)(= M , since M is a DFA) is minimal.

59

3. Finite Automata Constructions Based on Congruences

For the sake of completeness, we prove that indeed M is isomorphic to
Minr(L(D)). We defer the proof to Section 3.8.

Theorem 3.5.25. Let D be a DFA and M be Moore’s DFA for L(D) as in
Definition 3.5.20. Then, M is isomorphic to Minr(L(D)).

Finally, Hopcroft [51] devised a DFA minimization algorithm which offers
better performance than Moore’s. The ideas used by Hopcroft can be adapted
to our framework to devise a new algorithm from computing P∼r

L
. However, by

doing so, we could not derive a better explanation than the one provided by
Berstel et al. [9].

3.6 Related Work

Brzozowski and Tamm [18] showed that every regular language defines a unique
NFA, which they call átomaton. The átomaton is built upon the minimal DFA
NDM for the language, defining its states as non-empty intersections of com-
plemented or uncomplemented right languages of NDM , i.e., the atoms of the
language, which are thus intersections of complemented or uncomplemented
left quotients of the language. Then they proved that the átomaton is isomor-
phic to the reverse automaton of the minimal deterministic DFA for the reverse
language.

Intuitively, the construction of the átomaton based on the right languages
of the minimal DFA corresponds to Det`(NDM), while its construction based
on left quotients of the language corresponds to Min`(L(N)).

Corollary 3.6.1. Let NDM be the minimal DFA for a regular language L.
Then,

1. Det`(NDM) is isomorphic to the átomaton of L.

2. Min`(L) is isomorphic to the átomaton of L.

In the same paper, they also defined the notion of partial átomaton which
is built upon an NFA N . Each state of the partial átomaton is a non-empty
intersection of complemented or uncomplemented right languages of N , i.e.,
union of atoms of the language. Intuitively, the construction of the partial
átomaton corresponds to Det`(N).

Corollary 3.6.2. Let N be an NFA. Then, Det`(N) is isomorphic to the partial
átomaton of N .

Finally, they also presented a number of results [18, Theorem 3] related to
the átomaton A of a minimal DFA D with L = L(D):

60

3.7. Concluding Remarks

1. A is isomorphic to DRDR.

2. AR is the minimal DFA for LR

3. AD is the minimal DFA for L.

4. A is isomorphic to NRDMR for every NFA N accepting L.

All these relations can be inferred from Figure 3.3 which connects all the
automata constructions described in this paper together with those introduced
by Brzozowski and Tamm. For instance, property 1 corresponds to the path
starting at NDM (the minimal DFA for L(N)), labeled with R−Detr−R, and
ending in the átomaton of L(N). On the other hand, property 4 corresponds to
the path starting at N , labeled with R−Minr−R and ending in the átomaton
of L(N). Finally, the path starting at N , labeled with R−Detr−R and ending
in the partial átomaton of N shows that the latter is isomorphic to NRDR.

N Partial átomaton

of N NDM Átomaton

of L(N)

NR NRD Átomaton

of L(NR)
NRDM

Det`; C.3.6.2

R

Minr; T.3.3.7(2)

Min`; T.3.3.7(4)

Detr; T.3.3.7(3)

R
R

Det`; C.3.6.1(1)

R

Detr; T.3.3.7(6)

Detr; T.3.3.7(3)

Minr; T.3.3.7(2)

Min`; C.3.6.1(2)

Det`; T.3.3.7(5) Detr; T.3.3.7(3)

Det`; C.3.6.1(1)

Figure 3.3: Extension of the diagram of Figure 3.1 including the átomaton and
the partial átomaton. Recall that NDM is the minimal DFA for L(N). The
results referenced in the labels are those justifying the output of the operation.

3.7 Concluding Remarks

In this work, we establish a connection between well-known independent min-
imization methods through Theorem 3.4.2. Given a DFA, the left languages

61

3. Finite Automata Constructions Based on Congruences

of its states form a partition on words, P , and thus each left language is iden-
tified by a state. Intuitively, Moore’s algorithm merges states to enforce the
condition of Theorem 3.4.2, which results in merging blocks of P that belong to
the same Nerode’s equivalence class. Note that Hopcroft’s partition refinement
method [51] achieves the same goal at the end of its execution though, stepwise,
the partition computed may differ from Moore’s.

On the other hand, for co-deterministic NFAs (with no empty states) the
right language-based and the right automata-based congruences coincide. As a
result, determinizing a co-deterministic NFA yields directly the minimal DFA
for the language. This is the key idea behind the double-reversal method.
However, there exists a more general class of NFAs enjoying this condition,
namely, the class of NFAs whose reverse is an atomic NFA [18]. We show
that, relying on the left-right duality of the language-based equivalences, this
generalization is equivalent to asking whether the left languages of the NFA
are represented precisely by the abstraction given by right Nerode’s congruence
(see Theorem 3.4.2).

Some of these connections have already been studied in order to offer a better
understanding of Brzozowski’s double-reversal method. In particular, Courcelle
et al. [25] offer an alternative view of minimization and [4] determinization of
finite-state automata using notions on rectangular [4] decompositions of rela-
tions over words. When these relations are left and right congruences we obtain
the same notion of left-right duality through the reverse operation. In our work,
we further exploit these congruences to define automata constructions that al-
lows us to devise more efficient versions of the double-reversal method in a
systematic way. Furthermore, we use the notion of duality to reformulate the
later generalization of the double-reversal method, and thus shed light on the
connection between this method and Moore’s algorithm. Other uniform views
to this method are offered by Adámek et al. [1] and Bonchi et al. [12] from a
category-theoretic perspective. Interestingly, Bonchi et al. [12] devise a notion
of duality, in this case, between the concepts of reachability and observability of
transition systems, that allows them to explain the double-reversal method. Re-
garding these alternative approaches, our work revisits minimization techniques
relying on simple language-theoretic notions.

3.8 Supplementary Proofs

In this section we defer supplementary and technical proofs of results presented
in this chapter.

Lemma 3.8.1. Let L ⊆ Σ∗ be a regular language. Then, the following holds:

62

3.8. Supplementary Proofs

1. ∼rL is a right congruence;

2. ∼`L is a left congruence; and

3. P∼r
L
(L) = L = P∼`

L
(L).

Proof. Let us prove that ∼rL is a right congruence. Assume u ∼rL v, i.e.,
u−1L = v−1L. Given x ∈ Σ∗, we have that,

(ux)−1L = x−1(u−1L) = x−1(v−1L) = (vx)−1L .

Therefore, ux ∼rL vx.
Now, let us prove that ∼`L is a left congruence. Assume u ∼`L v, i.e.,

Lu−1 = Lv−1. Given x ∈ Σ∗, we have that,

L(xu)−1 = (Lu−1)x−1 = (Lv−1)x−1 = L(xv)−1 .

Therefore, xu ∼rL xv.
Finally, let P∼r

L
be the finite partition induced by ∼rL. We show that

P∼r
L
(L) = L. First note that L ⊆ P∼r

L
(L) by the reflexivity of the equiv-

alence relation ∼rL. On the other hand, we prove that for every u ∈ Σ∗,
if u ∈ P∼r

L
(L) then u ∈ L. By hypothesis, there exists v ∈ L such that

u ∼rL v, i.e., u−1L = v−1L. Since v ∈ L then ε ∈ v−1L. Therefore, ε ∈ u−1L
and we conclude that u ∈ L.

The proof of P∼`
L
(L) = L goes similarly.

Lemma 3.8.2. Let N be an NFA. Then, the following holds:

1. ∼rN is a right congruence;

2. ∼`N is a left congruence; and

3. P∼r
N

(L(N)) = L(N) = P∼`
N

(L(N)).

Proof. Let us prove that ∼rN is a right congruence. Assume u ∼rN v, i.e.,
postNu (I) = postNv (I). Given x ∈ Σ∗, we have that,

postNux(I) = postNx (postNu (I)) = postNx (postNv (I)) = postNvx(I) .

Therefore, ux ∼rN vx.
Now, let us prove that ∼`N is a left congruence. Assume u ∼`N v, i.e.,

preNu (F) = preNv (F). Given x ∈ Σ∗, we have that,

preNxu(F) = preNu (preNx (F)) = preNv (preNx (F)) = preNxv(F) .

63

3. Finite Automata Constructions Based on Congruences

Therefore, xu ∼rN xv.
Finally, P∼r

N
, the finite partition induced by∼rN . We show that P∼r

N
(L(N)) =

L(N). First note that L(N) ⊆ P∼r
N

(L(N)) by the reflexivity of the equiv-
alence relation ∼rN . On the other hand, we prove that for every u ∈ Σ∗,
if u ∈ P∼r

N
(L(N)) then u ∈ L(N). By hypothesis, there exists v ∈ L(N)

such that u ∼rN v, i.e., postNu (I) = postNv (I). Since v ∈ L(N) then
postNv ∩ F 6= ∅. Thus, postNu ∩ F 6= ∅ and we conclude that u ∈ L(N).

The proof of P∼`
N

(L) = L goes similarly.

Lemma 3.8.3. Let N be an NFA and let → and ← be a forward and backward
simulation on N , respectively. Then, the following holds:

1. ∼r→ is a right congruence;

2. ∼`← is a left congruence; and

3. P∼r
→(L(N)) = L(N) = P∼`

←
(L(N)).

Proof. Let us prove that u ∼r→ v is a right congruence. Assume u ∼r→ v,
i.e., (i) ∀q ∈ postu(I) ∃q′ ∈ postv(I) : q → q′; and (ii) ∀q′ ∈ postv(I) ∃q ∈
postu(I) : q′ → q.

Given x ∈ Σ∗, we will prove that ux ∼r→ vx, i.e., (i) ∀p ∈ postux(I) ∃p′ ∈
postvx(I) : p→ p′; and (ii) ∀p′ ∈ postvx(I) ∃p ∈ postux(I) : p′ → p.

We start with (i). Let p ∈ postux(I). Then p ∈ postx(q) for some
q ∈ postu(I). By hypothesis, there exists q′ ∈ postv(I) with q → q′. Since
p ∈ postx(q), by definition of q → q′, there must exist p′ ∈ postx(q

′) with
p → p′. Therefore, there exists p′ ∈ postvx(I) with p → p′. The proof of
(ii) goes similarly.

Now, let us prove that u ∼`← v is a left congruence. Assume u ∼`← v,
i.e., (i) ∀q ∈ preu(F) ∃q′ ∈ prev(F) : q ← q′; and (ii) ∀q′ ∈ prev(F) ∃q ∈
preu(F) : q′ ← q.

Given x ∈ Σ∗, we will prove that xu ∼`← xv, i.e., (i) ∀p ∈ prexu(F) ∃p′ ∈
prexv(F) : p← p′; and (ii) ∀p′ ∈ prexv(F) ∃p ∈ prexu(F) : p′ ← p.

We start with (i). Let p ∈ prexu(F). Then p ∈ prex(q) for some
q ∈ preu(F). By hypothesis, there exists q′ ∈ prev(F) with q ← q′. Since
p ∈ prex(q), by definition of q ← q′, there must exist p′ ∈ prex(q

′) with
p← p′. Therefore, there exists p′ ∈ prexv(F) with p← p′. The proof of (ii)
goes similarly.

Now we prove that P∼r
→(L(N)) = L(N). On one hand, L(N) ⊆

P∼r
→(L(N)) by reflexivity of ∼r→. On the other hand, we prove that

P∼r
→(L(N)) ⊆ L(N). If u ∈ P∼r

→(L(N)) then there exists v ∈ L(N) s.t.
u ∼r→ v, and, in particular, for each q′ ∈ postv(I) there exists q ∈ postu(I)

64

3.8. Supplementary Proofs

with q′ → q. Since v ∈ L(N), then there must be at least one q′ ∈ F . Since
q′ → q, necessarily q ∈ F . Therefore, u ∈ L(N).

Finally, we prove that P∼`
←

(L(N)) = L(N). On one hand, L(N) ⊆
P∼`
←

(L(N)) by reflexivity of ∼`←. On the other hand, we prove that
P∼`
←

(L(N)) ⊆ L(N). If u ∈ P∼`
←

(L(N)) then there exists v ∈ L(N) s.t.
u ∼`← v, and, in particular, for each q′ ∈ prev(F) there exists q ∈ preu(F)
with q′ ← q. Since v ∈ L(N), then there must be at least one q′ ∈ I. Since
q′ ← q, necessarily q ∈ I. Therefore, u ∈ L(N).

Lemma 3.5.22. Let L be a regular language. Then

P∼r
L

= gfp(λX.
k

a∈Σ,B∈X

{Ba−1, (Ba−1)c}f {L,Lc}) . (3.9)

Proof. Let Σ≤n (resp. Σn) denote the set of words with length up to n

(resp. exactly n), i.e., Σ≤n
def
= {w ∈ Σ∗ | |w| ≤ n} (resp. Σn def

= {w ∈ Σ∗ |
|w| = n}). Let us denote X≤n, the n-th iteration of the greatest fixpoint
computation of Equation (3.9). We will prove by induction on n that the
following equation holds, for each n ≥ 0:

X≤n+1 =
k

a∈Σ,B∈X≤n

{Ba−1, (Ba−1)c}f {L,Lc}

=
k

w∈Σ≤n

{Lw−1, (Lw−1)c} . (3.12)

• Base case: Let n = 0. It is easy to see that equality (3.12) holds since
{L,Lc} = {Lε−1, (Lε−1)c}. Now, let n = 1. Then,

X≤2 =
k

a∈Σ,B∈X≤1

{Ba−1, (Ba−1)c}f {L,Lc}

=
k

a∈Σ

(
{La−1, (La−1)c}f {(Lc)a−1, ((Lc)a−1)c}

)
f {L,Lc}

=
k

a∈Σ

{La−1, (La−1)c}f {L,Lc}

=
k

a∈Σ,w∈Σ≤1

{Lw−1, (Lw−1)c} .

65

3. Finite Automata Constructions Based on Congruences

The first equality holds using X≤1 = {L,Lc}, the second equality

holds using (La−1)c = Lca−1, and the last equality holds using Σ≤1 def
=

{ε} ∪ Σ.

• Inductive Step: Let us assume that equality 3.12 holds for each n ≤ k.
We will prove that it holds for n = k + 1. Note that, using the
inductive hypothesis twice, we have that:

X≤k+1 =
k

w∈Σ≤k

{Lw−1, (Lw−1)c}

=
k

w∈Σ≤k−1

{Lw−1, (Lw−1)c}f
k

a∈Σ
w∈Σk−1

{Lw−1a−1, (Lw−1a−1)c}

= X≤k f
k

w∈Σk

{Lw−1, (Lw−1)c} .

Using the above result, the induction hypothesis and the fact that
Ba−1 ∩ B̃a−1 = (B ∩ B̃)a−1, it follows that:

X≤k+2 =
k

a∈Σ
B∈X≤k+1

{Ba−1, (Ba−1)c}f {L,Lc}

=
k

a∈Σ
B∈Xk

{Ba−1, (Ba−1)c}f
k

a∈Σ
B∈

c

w∈Σk
{Lw−1,(Lw−1)c}

{Ba−1, (Ba−1)c}f {L,Lc}

=
k

a∈Σ
B∈Xk

{Ba−1, (Ba−1)c}f {L,Lc}

=†
k

w∈Σ≤k

{Lw−1, (Lw−1)c}f
k

w∈Σk+1

{Lw−1, (Lw−1)c}f {L,Lc}

=
k

w∈Σ≤k+1

{Lw−1, (Lw−1)c} ,

where Xk =
c
w∈Σk{Lw−1, (Lw−1)c} in step †. Therefore:

P∼r
L

= gfp(λX.
k

a∈Σ,B∈X

{Ba−1, (Ba−1)c}f {L,Lc}) .

Theorem 3.5.25. Let D be a DFA and M be Moore’s DFA for L(D) as in
Definition 3.5.20. Then, M is isomorphic to Minr(L(D)).

66

3.8. Supplementary Proofs

Proof. Let D = (Q′,Σ, δ′, I ′, F ′). Recall that Moore’s minimal DFA is
defined asM = (Q,Σ, δ, I, F) where the set of states corresponds to Moore’s
state-partition w.r.t. D, i.e., Q = QD; I = {QD(q) | q ∈ I ′}; F = {QD(q) |
q ∈ F ′} and S ′ = δ(S, a) iff ∃q ∈ S, q′ ∈ S ′ : q′ = δ′(q, a), for each S, S ′ ∈ Q
and a ∈ Σ. Let Minr(L(D)) = (Q̃,Σ, δ̃, Ĩ , F̃) as in Definition 3.3.6. Finally,
let L denote L(D), for simplicity. By Theorem 3.5.23, ϕ : ℘(Q′) → ℘(Σ∗)
with ϕ(S) = WD

I′,S, for each S ∈ QD, is a partition isomorphism between

QD and P∼r
L
. Note that, by construction of M , WM

I,S = WD
I′,S, for each

S ∈ QD. Thus, the mapping ψ : Q → Q̃ with ψ(S) = WM
I,S, for each

S ∈ Q, is also a partition isomorphism between QD and P∼r
L
.

We show that ψ is a DFA morphism between M and Minr(L). Let us
denote P∼r

L
simply as P . The initial state I of M is mapped to ψ(I) =

WM
I,I = P (ε), since ε ∈ WM

I,I . Thus, ψ maps the initial state of M with the
initial state of Minr(L). Note that each final state S in F is s.t. S ⊆ F ′.
Therefore, ψ(S) = WM

I,S = P (u) with u ∈ L, i.e., ψ maps each final state of
M to a final state of Minr(L).

We also have to show that S ′ = δ(S, a) iff ψ(S ′) = δ̃(ψ(S), a), for all
S, S ′ ∈ Q and a ∈ Σ. Assume that S ′ = δ(S, a), for some S, S ′ ∈ Q and
a ∈ Σ. Thus, there exists q, q′ ∈ Q′ s.t. q ∈ S, q′ ∈ S ′ and q′ = δ′(q, a).
Then, ψ(S) = WM

I,S and ψ(S ′) = WM
I,S′ and there exists u ∈ WI,S(M) s.t.

ua ∈ WM
I,S′ (M is a complete DFA). Then, ψ(S) = P (u) and ψ(S ′) =

P (ua). Since P is a partition induced by a right congruence then, using

Lemma 2.5.2, P (u)a ⊆ P (ua). Hence, ψ(S ′) = δ̃(ψ(S), a). Assume now

that, P (ua) = δ̃(P (u), a) for some u ∈ Σ∗ and a ∈ Σ. Consider S ∈ Q
s.t. ψ(S) = P (u), then u belongs to the left language of S, i.e., u ∈ WM

I,S.
Likewise, consider S ′ ∈ Q s.t. ψ(S ′) = P (ua), then ua ∈ WM

I,S′ . Hence,
there exists q, q′ ∈ Q′ s.t. q ∈ S, q′ ∈ S ′ and q′ = δ′(q, a). Therefore,
S ′ = δ(S, a).

67

3. Finite Automata Constructions Based on Congruences

68

4
Parikh Image of PushdownAutomata

In this chapter, we compare pushdown automata against context-free grammars
and finite-state automata for the Parikh image of context-free languages.

4.1 Introduction

Now we turn our attention to Parikh equivalence over words. Unlike the con-
gruences we proposed in the previous chapter, Parikh equivalence is an infinite-
index congruence. Recall that two words u, v are Parikh-equivalent iff they
have the same number of alphabet symbols regardless of the positions where
the symbols appear in the words, i.e., u and v have the same Parikh image,
or formally, *u+ = *v+. Thus, it is easy to see that, given an alphabet Σ, the
number of Parikh equivalence classes corresponds to the number of points in
the space N|Σ|. On the other hand, Parikh equivalence is both, a right and a
left congruence. Namely, given two Parikh-equivalent words u and v then *au+
= *av+ and *ua+ = *va+, for all a ∈ Σ.

Despite of not being an appropriate congruence for the construction of finite-
state automata, Parikh equivalence offers an interesting angle to compare the
conciseness of finite representations of the Parikh image of context-free lan-
guages in combination with the celebrated Parikh’s Theorem [76].

The question about the conciseness of pushdown automata against context-
free grammars for the representation of context-free languages was first ad-
dressed by Goldstine et al. [45] in a paper where they introduced an infinite
family of context-free languages whose representation by a pushdown automa-
ton is more concise than by context-free grammars. In particular, they showed

69

4. Parikh Image of Pushdown Automata

that each language of the family can be accepted by a pushdown automaton
with n ≥ 1 states and p ≥ 1 stack symbols, but every context-free grammar
needs at least n2p + 1 variables if n > 1 (p if n = 1). Incidentally, the family
shows that the translation procedure of a pushdown automaton into an equiva-
lent context-free grammar that appears in textbooks [52], which uses the same
large number of n2p + 1 variables if n > 1 (p if n = 1), is optimal in the sense
that there is no other algorithm that always produces fewer grammar variables.

We revisit this question but this time we turn our attention to Parikh equiv-
alence. We define an infinite family of context-free languages as Goldstine et
al. did but our family differs significantly from theirs. Given n ≥ 1 and k ≥ 1,
each member of our family is given by a PDA with n states, p = k + 2n + 4
stack symbols and a single input symbol.1 We show that, for each PDA of the
family, every equivalent CFG has Ω(n2(p− 2n− 4)) variables.

First, we conclude that the textbook translation of a PDA into a language-
equivalent context-free grammar is optimal2 when the alphabet is unary. Note
that if the alphabet is a singleton, there is no notion of ordering of the symbols in
the words and the usual equality over words coincides with Parikh equivalence.
Thus, we also conclude that the conversion algorithm is optimal for Parikh
equivalence.

Furthermore, we investigate the special case of deterministic PDAs over a
singleton alphabet for which equivalent context-free grammar representations
of small size had been defined [23, 78]. We give a new construction for an
equivalent context-free grammar given a unary DPDA that achieves the best
known bounds [23] by combining two existing procedures.

Finally, Parikh’s theorem [76] allows us to compare PDAs against finite
state automata for Parikh-equivalent languages. First, we use the same family
of PDAs to derive a lower bound on the number of states of every Parikh-
equivalent NFA. The comparison becomes simple as its alphabet is unary and
it accepts one single word. Second, using this lower bound we show that the
2-step procedure chaining existing constructions: (i) translate the PDA into
a language-equivalent CFG [52]; and (ii) translate the CFG into a Parikh-
equivalent NFA [32] yields optimal3 results in the number of states of the re-
sulting NFA.

As an independent contribution, we introduce a semantics of PDA runs as
trees that we call actrees. The richer tree structure (compared to a sequence)
makes simpler to compare each PDA of the family with its smallest grammar
representation.

1Their family has an alphabet of non-constant size.
2In a sense that we will precise in Section 4.3 (Remark 4.3.5).
3In a sense that we will precise in Section 4.4 (Remark 4.4.3).

70

4.1. Introduction

4.1.1 Notation

In this chapter, we will use the letter b to denote a symbol of a given alphabet Σ,
instead of the letter a, as we did in Chapter 2. In this way, we avoid confusion
with the notation used to denote the actions of an actree (see Section 4.2).

As defined in Chapter 2, an alphabet is unary iff it is a singleton. Thus, a
language, or an automaton, is unary iff it is defined over a unary alphabet.

4.1.2 Disassembly and Assembly of Quasi-runs

We complement the definition of quasi-run of a pushdown automaton given in
Chapter 2 with the notion of disassembly and assembly of quasi-runs. Broadly
speaking, we will show that every quasi-run with more than one move can be
disassembled into its first move and subsequent quasi-runs. Analogously, we will
assemble a quasi-run from a given action and a list of quasi-runs. Apart from
seeking completeness, these notions will be useful for the proof of Theorem 4.2.3.

To this end, we need to introduce a few auxiliary definitions. Given a word
w ∈ Σ∗ and an integer i, define wsh(i) = (w)i+1 · · · (w)i+|w|. Intuitively, w is
shifted i positions to the left if i ≥ 0 and to the right otherwise. So given
i ≥ 0, we will conveniently write w�i

for wsh(i) and w�i
for wsh(−i). Moreover,

set w� = w�1 . For example, a�1 = a�1 = ε, abcde�3 = de, abcde�3 = ab,
w = (w)1 · · · (w)iw�i

and w = w�i
(w)|w|−i+1 · · · (w)|w| for i > 0.

Given an ID I and i > 0 define I�i
= (state(I), stack(I)�i

) which, intu-
itively, removes from I the i bottom stack symbols. The next results how to
disassemble quasi-runs.

Lemma 4.1.1 (from [42]). Let r = I0 ` · · · ` In, be a quasi-run. Then we
can disassemble r into its first move I0 ` I1 and d = |stack (I1)| quasi-runs
r1, . . . , rd each of which is such that

ri = (Ipi−1
)�si

` · · · ` (Ipi)�si
.

where p0 ≤ p1 ≤ · · · ≤ pd are defined to be the least positions such that p0 = 1
and stack (Ipi) = stack (Ipi−1

)�, for all i. Also si = |stack (Ipi)|, for all i, i.e., ri
is a quasi-run obtained by removing from the move sequence Ipi−1

` · · · ` Ipi the
si bottom stack symbols leaving the stack of Ipi empty and that of Ipi−1

with one
symbol only. Necessarily, pd = n and each quasi-run ri starts with (stack (I1))i
as its initial content.

Example 4.1.2. Consider a PDA P with actions a1 to a5 respectively given
by (q0, X1) ↪→ε (q0, X0X0), (q0, X0) ↪→ε (q1, X1 ?), (q1, X1) ↪→ε (q1, X0X0),

71

4. Parikh Image of Pushdown Automata

(q1, X0) ↪→b (q1, ε) and (q1, ?) ↪→ε (q0, ε). Consider the following quasi-run:

r = (q0, X1) ` (q0, X0X0) ` (q1, X1 ? X0) ` (q1, X0X0 ? X0)

` (q1, X0 ? X0) ` (q1, ?X0) ` (q0, X0) ` (q1, X1 ?) ` (q1, X0X0 ?)

` (q1, X0 ?) ` (q1, ?) ` (q0, ε) .

We can disassemble r into its first move I0 ` I1 = (q0, X1) ` (q0, X0X0) and
d = 2 quasi-runs r1, r2 such that:

r1 = (Ip0)�s1
`∗ (Ip1)�s1

= (I1)�1 `∗ (I6)�1

= (q0, X0) ` (q1, X1 ?) ` (q1, X0X0 ?) ` (q1, X0 ?) ` (q1, ?) ` (q0, ε) ,

with p0 = 1, p1 = 6, s1 = |stack(I6)| = 1.

r2 = (Ip1)�s2
`∗ (Ip2)�s2

= (I6)�0 ` (I11)�0

= (q0, X0) ` (q1, X1 ?) ` (q1, X0X0 ?) ` (q1, X0 ?) ` (q1, ?) ` (q0, ε) ,

with p1 = 6, p2 = 11, s2 = |stack(I11)| = 0.
Note that for each quasi-run ri (i = 1, 2), the stack of (Ipi)�si

is empty and
that of (Ipi−1

)�si
contains one symbol only. Also, pd = p2 = n = 11 and each ri

starts with (stack(I1))i as its initial content. J

Now we show how to assemble a quasi-run from a given action and a list
of quasi-runs. We need the following notation: given I and w ∈ Γ∗, define
I • w = (state(I), stack(I)w). We skip the proof of this lemma, which follows
from a simple induction on d ≥ 1, the length of the word pushed by the given
action.

Lemma 4.1.3. Let a = (q,X) ↪→ (q′, β1 . . . βd) be an action and r1, . . . , rd be
d ≥ 1 quasi-runs with ri = I i0 ` I i1 ` · · · ` I ini

, for all i, such that:

1. the first action of ri pops βi for every i, and

2. the target state of last action of ri (a when i = 0) is the source state of
first action of ri+1 for all i ∈ {1, . . . , d− 1} (when d > 1).

Then there exists a quasi-run r given by:

(q,X) ` (q′, β1 . . . βd) ` (I1
1 • β2 . . . βd) ` · · · ` (I1

n1
• β2 . . . βd) ` · · ·

` (I`1 • β`+1 . . . βd) ` · · · ` (I`n`
• β`+1 . . . βd) ` · · ·

` (Id1 • ε) ` · · · ` (Idnd
• ε) , (4.1)

with 1 < ` < d.

72

4.2. A Tree-Based Semantics for Pushdown

4.2 A Tree-Based Semantics for Pushdown

Automata

In this section we introduce a tree-based semantics for PDA. Using trees instead
of sequences sheds the light on key properties needed to present our main results.

Definition 4.2.1. Given a PDA P , an action-tree (or actree for short) is a
labeled tree a(a1(. . .), . . . , ad(. . .)) where a is an action of P pushing β with
|β| = d and each children ai(. . .) is an actree such that ai pops (β)i for all i.
Furthermore, an actree τ must satisfy that the source state of (t)i+1 and the
target state of (t)i coincide for every i.

An actree τ consumes an input resulting from replacing each action in the
sequence t by the symbol it consumes (or ε, if the action does not consume
any). An actree a(. . .) is accepting if the initial ID enables a.

Example 4.2.2. Recall the PDA P described in Example 4.1.2. The reader
can check that the actree τ = a1(a2(a3(a4, a4), a5), a2(a3(a4, a4), a5)), depicted
in Figure 4.1, satisfies the conditions of Definition 4.2.1 where the sequence τ
is a1 a2 a3 a4 a4 a5 a2 a3 a4 a4 a5, |τ | = 11 and the input consumed is b4.

a1

a2

a3

a4 a4

a5

a2

a3

a4 a4

a5

Figure 4.1: Depiction of the tree a1(a2(a3(a4, a4), a5), a2(a3(a4, a4), a5)).

Recall the Definition 2.4.4 of dimension of a labeled tree. The annotation
d(τ)
τ (. . .) shows that the actree of Example 4.2.2 has dimension 2:

2
a1 (

1
a2 (

1
a3 (

0
a4,

0
a4),

0
a5),

1
a2 (

1
a3 (

0
a4,

0
a4),

0
a5)) .

J

The proof of the following result is deferred to Section 4.5

Theorem 4.2.3. Given a PDA, its actrees and quasi-runs are in a one-to-one
correspondence.

4.3 Parikh-Equivalent Context-Free Grammars

In this section we compare PDAs against CFGs when they describe Parikh-
equivalent languages. We first study the general class of (nondeterministic)

73

4. Parikh Image of Pushdown Automata

PDAs and, in Section 4.3.2, we look into the special case of unary deterministic
PDAs.

We prove that, for every n ≥ 1 and p ≥ 2n + 4, there exists a PDA
with n states and p stack symbols for which every Parikh-equivalent CFG has
Ω(n2(p− 2n− 4)) variables. To this aim, we present a family of PDAs P(n, k)
where n ≥ 1 and k ≥ 1. Each member has n states and k+2n+4 stack symbols,
and accepts one single word over a unary alphabet.

4.3.1 The Family P(n, k) of PDAs

Definition 4.3.1. Given natural values n ≥ 1 and k ≥ 1, define the PDA
P(n, k) with states Q = {qi | 0 ≤ i ≤ n− 1}, input alphabet Σ = {b}, stack
alphabet Γ = {S, ?, $} ∪ {Xi | 0 ≤ i ≤ k} ∪ {si | 0 ≤ i ≤ n− 1} ∪ {ri | 0 ≤ i ≤
n− 1}, initial state q0, initial stack symbol S and actions δ:

(q0, S) ↪→b (q0, Xk r0)
(qi, Xj) ↪→b (qi, Xj−1 rm siXj−1 rm) ∀ i,m ∈ {0, . . . , n− 1},

∀ j ∈ {1, . . . , k},
(qj, si) ↪→b (qi, ε) ∀i, j ∈ {0, . . . , n− 1},
(qi, ri) ↪→b (qi, ε) ∀i ∈ {0, . . . , n− 1},

(qi, X0) ↪→b (qi, Xk ?) ∀i ∈ {0, . . . , n− 1},
(qi, X0) ↪→b (qi+1, Xk $) ∀i ∈ {0, . . . , n− 2},

(qi, ?) ↪→b (qi−1, ε) ∀i ∈ {1, . . . , n− 1},
(q0, $) ↪→b (qn−1, ε)

(qn−1, X0) ↪→b (qn−1, ε) .

Lemma 4.3.2. Given n ≥ 1 and k ≥ 1, P(n, k) has a single accepting actree
consuming input bN where N ≥ 2n

2 k.

Proof. Fix values n and k and refer to the member of the family P(n, k)
as P . We show that P has exactly one accepting actree. We define a
witness labeled tree τ inductively on the structure of the tree. Later we
will prove that the induction is finite. First, we show how to construct the
root and its children subtrees. This corresponds to case 1 below. Then,
each non-leaf subtree is defined inductively in cases 2 to 5. Note that each
non-leaf subtree of τ falls into one (and only one) of the cases. In fact, all
cases are disjoint, in particular 2, 4 and 5. The reverse is also true: all cases
describe a non-leaf subtree that does occur in τ . Finally, we show that each
case describes uniquely how to build the next layer of children subtrees of
a given non-leaf subtree.

1. τ = a(a1(. . .), a2) where a = (q0, S) ↪→b (q0, Xk r0) and a1(. . .) and a2

74

4.3. Parikh-Equivalent Context-Free Grammars

are of the form:

a2 = (q0, r0) ↪→b (q0, ε) only action popping r0

a1 = (q0, Xk) ↪→b (q0, Xk−1 r0 s0Xk−1 r0) only way to enable a2.

Note that the initial ID (q0, S) enables a which is the only action of P
with this property. Note also that

d
a (

d
a1 (. . .),

0
a2) holds, where d > 0.

2. Each subtree whose root is labeled:

a = (qi, Xj) ↪→b (qi, Xj−1 rm siXj−1 rm)

with i,m ∈ {0, . . . , n − 1} and j ∈ {2, . . . , k} is of the form
a(a1(. . .), a2, a3, a1(. . .), a2) where:

a2 = (qm, rm) ↪→b (qm, ε) only action popping rm

a3 = (qm, si) ↪→b (qi, ε) only action popping si from qm

a1 = (qi, Xj−1) ↪→b (qi, Xj−2 rm siXj−2 rm) only way to enable a2.

Assume for now that τ is unique. Therefore, as the 1st and 4th child
of a share the same label a1, they also root the same subtree. Thus,
it holds (d > 0)

d+1
a (

d
a1 (. . .),

0
a2,

0
a3,

d
a1 (. . .),

0
a2) .

3. Each subtree whose root is labeled a = (qi, X0) ↪→b (qi+1, Xk $) with
i ∈ {0, . . . , n− 2} has the form a(a1(. . .), a2) where

a2 = (q0, $) ↪→b (qn−1, ε) only action popping $

a1 = (qi+1, Xk) ↪→b (qi+1, Xk−1 r0 si+1 Xk−1 r0) only way to enable a2.

Note that
d
a (

d
a1 (. . .),

0
a2) holds, where d > 0.

4. Each subtree whose root is labeled a = (qi, X1) ↪→b (qi, X0 rm siX0 rm)
with i ∈ {0, . . . , n− 1} and m ∈ {0, . . . , n− 2} has the form

a(a1(a11(. . .), a12), a2, a3, a1(a11(. . .), a12), a2) .

75

4. Parikh Image of Pushdown Automata

where

a2 = (qm, rm) ↪→b (qm, ε) only action popping rm

a3 = (qm, si) ↪→b (qi, ε) only action popping

si from qm

a1 = (qi, X0) ↪→b (qi, Xk ?) assume it for now

a12 = (qm+1, ?) ↪→b (qm, ε) only way to enable a2

a11 = (qi, Xk) ↪→b (qi, Xk−1 rm+1 siXk−1 rm+1) only way to enable a12.

Assume a1 is given by the action (qi, X0) ↪→b (qi+1, Xk $) instead.
Then following the action popping $, we would end up in the state
qn−1, not enabling a2 since m < n− 1.
Again, assume for now that τ is unique. Hence, as the 1st and 4th

child of a are both labeled by a1, they root the same subtree. Thus,
it holds (d > 0)

d+1
a (

d
a1 (

d
a11 (. . .),

0
a12),

0
a2,

0
a3,

d
a1 (

d
a11 (. . .),

0
a12),

0
a2) .

5. Each subtree whose root is labeled

a = (qi, X1) ↪→b (qi, X0 rn−1 siX0 rn−1)

with i ∈ {0, . . . , n−1} has the form a(a1(. . .), a2, a3, a1(. . .), a2) where

a2 = (qn−1, rn−1) ↪→b (qn−1, ε) only action popping rn−1

a3 = (qn−1, si) ↪→b (qi, ε) only action popping

si from qi

a1 =

{
(qi, X0) ↪→b (qi+1, Xk $) if i < n− 1

(qn−1, X0) ↪→b (qn−1, ε) otherwise
assume it for now.

For both cases (i < n − 1 and i = n − 1), assume a1 is given by
(qi, X0) ↪→b (qi, Xk ?) instead. Then, the action popping ? must end
up in the state qn−1 in order to enable a2, i.e., it must be of the form
(qn, ?) ↪→b (qn−1, ε). Hence the action popping Xk must be of the
form (qi, Xk) ↪→b (qi, Xk−1 rm siXk−1 rm) where necessarily m = n, a
contradiction (the stack symbol rn is not defined in P).

76

4.3. Parikh-Equivalent Context-Free Grammars

Assume for now that τ is unique. Then, as the 1st and 4th child of a
are labeled by a1, they root the same subtree (possibly a leaf). Thus,
it holds (d ≥ 0)

d+1
a (

d
a1 (. . .),

0
a2,

0
a3,

d
a1 (. . .),

0
a2) .

We now prove that τ is finite by contradiction. Suppose τ is an infinite
tree. König’s Lemma shows that τ has thus at least one infinite path, say
p, from the root. As the set of labels of τ is finite then some label must
repeat infinitely often along p. Let us define a strict partial order between
the labels of the non-leaf subtrees of τ . We restrict to the non-leaf subtrees
because no infinite path contains a leaf subtree. Let a1(. . .) and a2(. . .) be
two non-leaf subtrees of τ . Let qi1 be the source state of a1 and qf1 be the

target state of the last action in the sequence a1(. . .). Define qi2 , qf2 similarly
for a2(. . .). Let Xj1 be the symbol that a1 pops and Xj2 be the symbol that
a2 pops. Define a1 ≺ a2 iff (a) either i1 < i2, (b) or i1 = i2 and f1 < f2, (c) or
i1 = i2, f1 = f2 and j1 > j2. First, note that the label a of the root of τ (case
1) only occurs in the root as there is no action of P pushing S. Second,
relying on cases 2 to 5, we observe that every pair of non-leaf subtrees
a1(. . .) and a2(. . .) (excluding the root) such that a1(. . .) is the parent node
of a2(. . .) verifies a1(. . .) ≺ a2(. . .). Using the transitive property of the
strict partial order ≺, we conclude that every pair of subtrees a1(. . .) and
a2(. . .) in p such that a1(. . . a2(. . .) . . .) verifies a1(. . .) ≺ a2(. . .). Therefore,
no repeated variable can occur in p (contradiction). We conclude that τ is
finite.

The reader can observe that τ = a(. . .) verifies all conditions of the
definition of actree (Definition 4.2.1) and the initial ID enables a, thus it is
an accepting actree of P . Since we also showed that no other tree can be
defined using the actions of P , τ is unique.

Finally, we give a lower bound on the length of the word consumed by
τ . To this aim, we prove that d(t) = n2 k. Then since all actions consume
input symbol b, Lemma 2.4.6 shows that the word bN consumed is such
that N ≥ 2n

2 k.
Note that, if a subtree of τ verifies case 1 or 3, its dimension remains the

same w.r.t. its children subtrees. Otherwise, the dimension always grows.
Recall that all cases from 1 to 5 describe a set of labels that does occur
in τ . Also, as τ is unique, no path from the root to a leaf repeats a label.
Thus, to compute the dimension of τ is enough to count the number of
distinct labels of τ that are included in cases 2, 4 and 5, which is equivalent

77

4. Parikh Image of Pushdown Automata

to compute the size of the set

D = {(qi, Xj) ↪→ (qi, Xj−1 rm siXj−1 rm) | 1 ≤ j ≤ k, 0 ≤ i,m ≤ n− 1} .

Clearly |D| = n2 k from which we conclude that d(t) = n2 k. Hence, |t| ≥
2n

2 k, and therefore τ consumes a word bN where N ≥ 2n
2 k since each action

of τ consumes a b.

Let us give an example of a member of the family P(n, k).

Example 4.3.3. We give a graphical depiction of the accepting actree τ of
P(2, 1) in Figure 4.2 at the end of the chapter. Recall that P(2, 1) corresponds
to the member of the family P(n, k) that has 2 states q0 and q1, and 9 stack
symbols S,X0, X1, s0, s1, r0, r1, ? and $.

J

Theorem 4.3.4. For each n ≥ 1 and p > 2n+ 4, there is a PDA with n states
and p stack symbols for which every Parikh-equivalent CFG has Ω(n2(p−2n−4))
variables.

Proof. Consider the family of PDAs P(n, k) with n ≥ 1 and k ≥ 1 de-
scribed in Definition 4.3.1. Fix n and k and refer to the corresponding
member of the family as P .

First, Lemma 4.3.2 shows that L(P) consists of a single word bN with
N ≥ 2n

2 k. It follows that a language L is Parikh-equivalent to L(P) iff L
is language-equivalent to L(P).

Let G be a CFG such that L(G) = L(P). The smallest CFG that
generates exactly one word of length ` has size Ω(log(`)) [21, Lemma 1],
where the size of a grammar is the sum of the length of all the rules. It
follows that G is of size Ω(log(2n

2k)) = Ω(n2k). As k = p − 2n − 4, then
G has size Ω(n2(p− 2n− 4)). We conclude that G has Ω(n2 (p− 2n− 4))
variables.

Remark 4.3.5. According to the classical conversion algorithm, every CFG that
is equivalent to P(n, k) needs at most n2(k + 2n+ 4) ∈ O(n2k + n3) variables.
On the other hand, Theorem 4.3.4 shows that a lower bound for the number of
variables is Ω(n2k). We observe that, as long as n ≤ Ck for some positive con-
stant C, the family P(n, k) shows that the conversion algorithm is optimal4 in
the number of variables when assuming both language and Parikh equivalence.
Otherwise, the algorithm is not optimal as there exists a gap between the lower
bound and the upper bound. For instance, if n = k2 then the upper bound is
O(k5 + k6) = O(k6) while the lower bound is Ω(k5).

4Note that if n ≤ Ck for some C > 0 then the n3 addend in O(n2k+n3) becomes negligible
compared to n2k, and the lower and upper bound coincide.

78

4.3. Parikh-Equivalent Context-Free Grammars

4.3.2 The Case of Unary Deterministic Pushdown

Automata

We have seen that the classical translation from PDA to CFG is optimal in the
number of grammar variables for the family of unary nondeterministic PDA
P(n, k) when n is in linear relation with respect to k. However, for unary de-
terministic PDA (UDPDA, for short) the situation is different. Pighizzini [78,
Theorem 4] shows that for every UDPDA accepting by final states with n states
and p stack symbols, there exists an equivalent CFG with at most 2np varia-
bles. Although he gives a definition of such a grammar, we were not able to
extract an algorithm from it. On the other hand, Chistikov and Majumdar [23,
Lemma 4] give a polynomial time algorithm that transforms a UDPDA accept-
ing by final states into an equivalent CFG going through the construction of a
pair of straight-line programs5. The size of the resulting CFG is linear in that
of the UDPDA.6

We propose a new polynomial time algorithm that converts a UDPDA with
n states and p stack symbols into an equivalent CFG with O(np) variables.
Our algorithm is based on the observation that the conversion algorithm from
PDAs to CFGs need not consider all the triples in (2.1). We discard unnecessary
triples using the saturation procedure [13, 35] that computes the set of reachable
IDs.

For a given PDA P with q ∈ Q and X ∈ Γ, define the set of reachable IDs
RP(q,X) as follows:

RP(q,X)
def
= {(q′, β) | ∃(q,X) ` · · · ` (q′, β)} .

Lemma 4.3.6. If P is a UDPDA then the set {I ∈ RP(q,X) | stack(I) = ε}
has at most one element for every state q and stack symbol X.

Proof. Let P be a UDPDA with Σ = {a}. Since P is deterministic we
have that (i) for every q ∈ Q,X ∈ Γ and b ∈ Σ ∪ {ε}, |δ(q, b,X)| ≤ 1 and,
(ii) for every q ∈ Q and X ∈ Γ, if δ(q, ε,X) 6= ∅ then δ(q, b,X) = ∅ for
every b ∈ Σ.

The proof goes by contradiction. Assume that for some state q and stack

5An straight-line program over an alphabet Σ is a context-free grammar generating one sin-
gle word over Σ. The combination of the two straight-line programs constructed by Chistikov
and Majumdar [23] represent the unary language of the input UDPDA.

6Chistikov and Majumdar [23] define the size of a CFG as its number of variables when
the grammar is given in Chomsky normal form. They define the size of a unary pushdown
automaton as the product of number of states and the number of stack symbols.

79

4. Parikh Image of Pushdown Automata

symbol X, there are two IDs I1 and I2 in RP(q,X) such that stack(I1) =
stack(I2) = ε and state(I1) 6= state(I2).

Necessarily, there exist three IDs J , J1 and J2 with J1 6= J2 such that
the following holds:

(q,X) ` · · · `J `a J1 ` · · · ` I1

(q,X) ` · · · `J `b J2 ` · · · ` I2 .

It is routine to check that if a = b then P is not deterministic, a contradic-
tion. Next, we consider the case a 6= b. When a and b are symbols, because
P is a unary DPDA, then they are the same, a contradiction. Else, if ei-
ther a or b is ε, then P is not deterministic, a contradiction. We conclude
from the previous that when stack(I1) = stack(I2) = ε, then necessarily
state(I1) = state(I2), and therefore the set {I ∈ RP(q,X) | stack(I) = ε}
has at most one element.

Intuitively, Lemma 4.3.6 shows that, when fixing q and X, there is at most
one q′ such that the triple [qXq′] generates a string of terminals. We use this
fact to prove the following theorem.

Theorem 4.3.7. For every UDPDA with n states and p stack symbols, there
is a polynomial time algorithm that computes an equivalent CFG with at most
np variables.

Proof. The conversion algorithm translating a PDA P to a CFG G com-
putes the set of grammar variables {[qXq′] | q, q′ ∈ Q,X ∈ Γ}. By
Lemma 4.3.6, for each q and X there is at most one variable [qXq′] in
the previous set generating a string of terminals. The consequence of the
lemma is two-fold: (i) For the triples it suffices to compute the subset of the
aforementioned generating variables, which we denote by T in the sequel.
Clearly, |T | ≤ np. (ii) Each action of P now yields a single rule in G. This
is because, according to the definition of the set of productions in (2.2) (see
Definition 2.4.9), there is at most one choice for r1 to rd, hence we avoid the
exponential blowup of the runtime in the conversion algorithm. To compute
T given P , we use the polynomial time saturation procedure [13, 35] which
given (q,X) computes a NFA for the set RP(q,X). Then we compute from
this set the unique state q′ (if any) such that (q′, ε) ∈ RP(q,X), hence T .
From the above we find that, given P , we compute G in polynomial time.

Up to this point, we have assumed the empty stack as the acceptance con-
dition. For general PDA, assuming final states or empty stack as acceptance

80

4.3. Parikh-Equivalent Context-Free Grammars

condition induces no loss of generality. The situation is different for determinis-
tic PDAs where accepting by final states is more general than empty stack (see
Remark 2.3.9). For this reason, we contemplate the case where the UDPDA
accepts by final states. Theorem 4.3.8 shows how our previous construction can
be modified to accommodate the acceptance condition by final states.

Theorem 4.3.8. For every UDPDA with n states and p stack symbols that
accepts by final states, there is a polynomial time algorithm that computes an
equivalent CFG with O(np) variables.

Proof. Let P be a UDPDA with n states and p stack symbols that accepts
by final states. We first translate P = (Q,Σ,Γ, δ, q0, Z0, F)a into a (possibly
nondeterministic) unary pushdown automaton P ′ = (Q′,Σ,Γ′, δ′, q′0, Z

′
0)

with an empty stack acceptance condition [52]. In particular, Q′ = Q ∪
{q′0, sink}; Γ′ = Γ ∪ {Z ′0}; and δ′ is given by:

δ ∪ {(q′0, Z ′0) ↪→ε (q0, Z0 Z
′
0)}

∪ {(q,X) ↪→ε (sink , X) | X ∈ Γ′, q ∈ F}
∪ {(sink , X) ↪→ε (sink , ε) | X ∈ Γ′} .

The new stack symbol Z ′0 is to prevent P ′ from incorrectly accepting when
P is in a nonfinal state with an empty stack. The state sink is to empty
the stack upon P entering a final state. Observe that P ′ need not be
deterministic. Also, it is routine to check that L(P ′) = L(P) (for a proof,
see Theorem 6.11 in [52]) and P ′ is computable in time linear in the size of
P . Now let us turn to RP ′(q,X). For P ′ a weaker version of Lemma 4.3.6
holds: the set H = {I ∈ RP ′(q,X) | stack(I) = ε} has at most two
elements for every state q ∈ Q′ and stack symbols X ∈ Γ′. This is because
if H contains two IDs then necessarily one of them has sink for state.

Based on this result, we construct T as in Theorem 4.3.7, but this time
we have that |T | is O(np).

Now we turn to the set of production rules as defined in (2.2) (see
Definition 2.4.9). We show that each action (q,X) ↪→b (q′, β) of P ′ yields
at most d production rules in G where d = |β|. For each state ri in (2.2)
we have two choices, one of which is sink . We also know that once a move
sequence enters sink it cannot leave it. Therefore, we have that if ri = sink
then ri+1 = · · · = rd = sink . Given an action, it thus yields d production
rules one where r1 = · · · = rd = sink , another where r2 = · · · = rd = sink ,
. . . , etc. Hence, we avoid the exponential blowup of the runtime in the
conversion algorithm.

81

4. Parikh Image of Pushdown Automata

The remainder of the proof follows that of Theorem 4.3.7.

aRecall that the set of final states is given by a subset F of Q (see Remark 2.3.7).

4.4 Parikh-Equivalent Finite-State Automata

Parikh’s theorem [76] shows that every context-free language is Parikh-equivalent
to a regular language. Using this result, we can compare PDAs against NFAs
under Parikh equivalence. We start by deriving a lower bound using the family
P(n, k). Because its alphabet is unary and it accepts a single long word, the
comparison becomes straightforward.

Theorem 4.4.1. For each n ≥ 1 and p > 2n + 4, there is a PDA with n
states and p stack symbols for which every Parikh-equivalent NFA has at least
2n

2(p−2n−4) + 1 states.

Proof. Consider the family of PDAs P(n, k) with n ≥ 1 and k ≥ 1 de-
scribed in Definition 4.3.1. Fix n and k and refer to the corresponding
member of the family as P . By Lemma 4.3.2, L(P) = {bN} with N ≥ 2n

2k.
Then, the smallest NFA that is Parikh-equivalent to L(P) needs N + 1
states. As k = p− 2n− 4, we conclude that the smallest Parikh-equivalent
NFA has at least 2n

2(p−2n−4) + 1 states.

Let us now turn to upper bounds. We give a 2-step procedure that, given
a PDA, computes a Parikh-equivalent NFA. The steps are: (i) translate the
PDA into a language-equivalent context-free grammar [52]; and (ii) translate
the context-free grammar into a Parikh-equivalent finite state automaton [32].

First, let us introduce the following definition. A grammar is in 2-1 normal
form (2-1-NF, for short) if each rule (X,α) ∈ R is such that α consists of at most
one terminal and at most two variables. It is worth pointing that, when the
grammar is in 2-1-NF, the resulting Parikh-equivalent NFA from step (ii) has
O(4n) states where n is the number of variables [32]. For the sake of simplicity,
we will assume that grammars are in 2-1-NF which holds when PDAs are in
reduced form: every move is of the form (q,X) ↪→b (q′, β) with |β| ≤ 2 and
b ∈ Σ ∪ {ε}.

Theorem 4.4.2. Given a PDA in reduced form with n ≥ 1 states and p ≥ 1
stack symbols, there is a Parikh-equivalent NFA with O(4n

2p) states.

82

4.5. Supplementary Proofs

Proof. The algorithm to convert a PDA with n ≥ 1 states and p ≥ 1
stack symbols into a CFG that generates the same language [52] uses at
most n2p+1 variables if n > 1 (or p if n = 1). Given a CFG of n variables in
2-1-NF, one can construct a Parikh-equivalent NFA with O(4n) states [32].

Given a PDA P with n ≥ 1 states and p ≥ 1 stack symbols the con-
version algorithm returns a language-equivalent CFG G. Note that if P is
in reduced form, then the conversion algorithm returns a CFG in 2-1-NF.
Then, apply to G the known construction that builds a Parikh-equivalent
NFA [32]. The resulting NFA has O(4n

2p) states.

Remark 4.4.3. Theorem 4.4.1 shows that every NFA that is Parikh-equivalent
to P(n, k) needs Ω(2n

2k) states. On the other hand, Theorem 4.4.2 shows that
the number of states of every Parikh-equivalent NFA is O(4n

2(k+2n+4)). Thus,
our construction is close to optimal7 when n is in linear relation w.r.t. k.

Finally, let us discuss the reduced form assumption. Its role is to simplify
the exposition and, indeed, it is not needed to prove correctness of the 2-step
procedure. The assumption can be relaxed and bounds can be inferred. They
will contain an additional parameter related to the length of the longest sequence
of symbols pushed on the stack.

4.5 Supplementary Proofs

Theorem 4.2.3. Given a PDA, its actrees and quasi-runs are in a one-to-one
correspondence.

Proof. To prove the existence of a one-to-one correspondence we show
that:

1. Each quasi-run must be paired with at least one actree, and viceversa.
2. No quasi-run may be paired with more than one actree, and viceversa.

1. First, given a quasi-run r of P , define a tree τ inductively on the length
of r. We prove at the same time that (4.2) holds for τ , which we show is
an actree.

t and the sequence of actions of r coincide. (4.2)

• Base case: In this case, necessarily r = I0 ` I1 and we define τ as the

7As the blow up of our construction is O(4n
2(k+2n+4)) for a lower bound of 2n

2k, we say
that it is close to optimal in the sense that 2n2(k+ 2n+ 4) ∈ Θ(n2k), which holds when n is
in linear relation with respect to k (see Remark 4.3.5).

83

4. Parikh Image of Pushdown Automata

leaf labeled by the action I0 ↪→ I1. Clearly, τ satisfies (4.2), hence τ
is an actree (τ trivially verifies Definition 4.2.1).

• Inductive step: Now consider the case r = I0 ` I1 ` · · · ` In where
n > 1, we define τ as follows. Lemma 4.1.1 shows r disassembles
into its first action a and d = |stack(I1)| ≥ 1 quasi-runs r1, . . . , rd.
The action a labels the root of τ which has d children τ1 to τd. The
subtrees τ1 to τd are defined applying the induction hypothesis on the
quasi-runs r1 to rd, respectively. From the induction hypothesis, τ1

to τd are actrees and each sequence ti coincide with the sequence of
actions of the quasi-run ri. Moreover, Lemma 4.1.1 shows that the
state of the last ID of ri coincides with the state of the first ID of ri+1

for all i ∈ {1, . . . , d− 1}. Also, the state of the first ID of r1 coincides
with the state of I1. We conclude from above that τ satisfies (4.2)
and that τ is an actree since it verifies Definition 4.2.1.

Second, given an actree τ of P , we define a move sequence r inductively
on the height of τ . We prove at the same time that (4.2) holds for r which
we show is a quasi-run.

• Base case: In this case, we assume h(t) = 0. Then, the root of τ is
a leaf labeled by an action a = I0 ↪→ I1 and we define r = I0 ` I1.
Clearly, r satisfies (4.2) and is a quasi-run.

• Base case: Now, assume that τ has d children τ1 to τd, we define
r as follows. By the induction hypothesis, each subtree τi for all
i ∈ {1, . . . , d} defines a quasi-run ri verifying (4.2). The definition of
actree shows that the root of τ pushes β1 to βd which are popped by its
d children. By induction hypothesis each ri for all i ∈ {1, . . . , d} thus
starts by popping βi. Next it follows from the induction hypothesis
and the definition of actree that the target state of the action given
by the last move of ri coincides with the source state of the action
given by the first move of ri+1 for all i ∈ {1, . . . , d−1}. Moreover, the
target state of a coincides with the source state of the action given by
the first move of r1. Thus, applying Lemma 4.1.3 to the action given
by the root of τ and r1, . . . , rd yields the quasi-run r that satisfies
(4.2) following our previous remarks.

2. First, we prove that no quasi-run may be paired with more than one
actree. The proof goes by contradiction. Given a move sequence I0 ` . . . `
In, define its sequence of actions a1 . . . an such that the move Ii ` Ii+1 is

84

4.5. Supplementary Proofs

given by the action ai+1, for all i. Note that two quasi-runs r = I0 ` . . . ` In
and r′ = I ′0 ` . . . ` I ′m are equal iff their sequences of actions coincide.

Suppose that given the actrees τ and τ ′ with τ 6= t′, there exist two
quasi-runs r and r′ such that r is paired with τ and r′ is paired with τ ′,
under the relation we described in part 1. of this proof, and r = r′. Let
t = a1, . . . , an and t′ = a′1, . . . , a

′
m. Let p ∈ {1, . . . ,min(n,m)} be the

least position in both sequences such that ap 6= a′p. By (4.2), the sequences
of actions of r and r′ also differ at position p (at least). Thus, r 6= r′

(contradiction).
Second, we prove that no actree may be paired with more than one

quasi-run. Again, we give a proof by contradiction.
Suppose that given the quasi-runs r and r′ with r 6= r′, there exist two

actrees τ and τ ′ such that τ is paired with r and τ ′ is paired with r′, under
the relation we described in part 1. of the proof, and τ = t′. We rely on
the standard definition of equality between labeled trees.

Suppose a1 . . . an is the sequence of actions of r and a′1 . . . a
′
m is the

sequence of actions of r′. Let p ∈ {1, . . . ,min(n,m)} be the least position
such that ap 6= a′p. By (4.2), t and t′ also differ at position p (at least).
Then, τ 6= t′ (contradiction).

85

4. Parikh Image of Pushdown Automata

(q0, S) ↪→b (q0, X1 r0)

(q0, X1) ↪→b (q0, X0 r0 s0X0 r0)

τ1 (q0, r0) ↪→b q0 (q0, s0) ↪→b q0 τ1 (q0, r0) ↪→b q0

(q0, r0) ↪→b q0

(a) Top of the tree τ

(q0, X0) ↪→b (q0, X1 ?)

(q0, X1) ↪→b (q0, X0 r1 s0X0 r1)

τ2 (q1, r1) ↪→b q1 (q1, s0) ↪→b q0 τ2 (q1, r1) ↪→b q1

(q1, ?) ↪→b q0

(b) Subtree τ1

(q0, X0) ↪→b (q1, X1 $)

(q1, X1) ↪→b (q1, X0 r0 s1X0 r0)

τ3 (q0, r0) ↪→b q0 (q0, s1) ↪→b q1 τ3 (q0, r0) ↪→b q0

(q0, $) ↪→b q1

(c) Subtree τ2

(q1, X0) ↪→b (q1, X1?)

(q1, X1) ↪→b (q1, X0 r1 s1X0 r1)

(q1, X0) ↪→b q1 (q1, r1) ↪→b q1 (q1, s1) ↪→b q1 (q1, X0) ↪→b q1 (q1, r1) ↪→b q1

(q1, ?) ↪→b q0

(d) Subtree τ3

Figure 4.2: Accepting actree τ of P(2, 1). We have split the tree into 4 subtrees,
and replaced actions of the form (q0, X) ↪→b (q1, ε) simply by (q0, X) ↪→b q1.

86

5
Parikh Image ofWeightedContext-Free

Grammars

In this chapter, we address the problem of extending Parikh’s Theorem to the
weighted case. Since in this setting the result does not hold in general, we
consider the so-called Parikh property and we study: (i) under which conditions
the Parikh property holds, and (ii) whether the property is decidable or not.

5.1 Introduction

We continue working under the Parikh equivalence assumption, but this time
we turn our attention to the weighted case.

Extending Parikh’s Theorem to this setting consists in asking whether, for a
given weighted pushdown automaton P , there is a weighted finite-state automa-
ton A that accepts a Parikh-equivalent language and such that for every word
w, the sum of the weights of all words Parikh-equivalent to w in P coincides
with that of all Parikh-equivalent words to w in A.

This generalization has the potential of expanding the applications of this
result on the analysis of multi-threaded asynchronous programs with procedures
to systems where transitions are augmented with a weight that may represent
the cost of performing the transition or the probability of an event associated
to it. Finding a weighted finite-state automaton that is Parikh-equivalent to
the original program and preserves the costs enables quantitative [22, 29, 83]
and probabilistic analysis [5] of programs following this paradigm.

In this chapter, we will present our results using the grammar model (as
opposed to the automata model). Using weighted context-free grammars allows

87

5. Parikh Image of Weighted Context-Free Grammars

us to exploit their connection with algebraic systems of equations to give more
simple and convincing proofs of our results.

In a WCFG, a weight is assigned to each rule of the grammar. The notion
of weight is extended from rules to parse trees by multiplying the weights of the
rules used along a tree, and from parse trees to words by adding the weights of
all the possible parse trees that yield to a word. We say that two WCFGs G1

and G2 are Parikh-equivalent iff for each class of Parikh-equivalence, the sum
of the weights of all its words coincide for G1 and G2.

We consider the following problem: given a WCFG G1, does there exists a
Parikh-equivalent WCFG G2 that is regular? If the answer is positive we say
that G1 satisfies the Parikh property.

It follows from a known counterexample by Petre [77] that the property is
not true in general. Recently, Bhattiprolu et al. [10] further investigated this
question. They show a class of WCFGs over the unary alphabet that always
satisfy the Parikh property.

Now, we show that every nonexpansive WCFG (over an arbitrary alphabet
and arbitrary semiring) satisfies the Parikh property. As we will see, a WCFG is
nonexpansive if no grammar derivation is of the form X ⇒∗ α0Xα1Xα2, where
X is a grammar variable and each αi is a word of terminals and variables. Note
that nonexpansiveness is decidable as it reduces to computing predecessors of a
regular set [34]. We will show that in the unary case the class of nonexpansive
grammars strictly contains the class defined by Bhattiprolu et al. [10]. How-
ever, nonexpansiveness is a sufficient condition for the Parikh property, but not
necessary. In particular, we give an example of an expansive WCFG for which
there exists a Parikh-equivalent regular WCFG. This shows that a conjecture
formulated by Baron and Kuich [8] in 1981 is false.1 Furthermore, we will show
that nonexpansiveness is not necessary for the property even when the alphabet
is unary by means of a similar example.

In the second part of our work, we study the question of whether the Parikh
property is decidable. To the best of our knowledge, this question is open.
However, it implicitly follows from a result by Kuich et al. [67] that, when we
equivalently formulate the property in terms of formal power series, it is decid-
able over the semiring of rational numbers. Their proof relies on a cumbersome
elimination procedure which is hard to perform even on small examples. We
sidestep this issue using a more standard technique: Groebner bases. This way,
we illustrate the algorithm on examples with the support of mainstream open-
source computer algebra systems.

1Essentially, they conjectured that every unambiguous WCFG G is nonexpansive iff G has
the Parikh property [8, Conjecture C].

88

5.1. Introduction

5.1.1 Notation and Definitions

First, recall that S will always denote a commutative semiring.

As usual, we will denote by Σ∗ the set of all words over the alphabet Σ and
we will use w,w′ and wi (i ∈ N) to denote its elements. On the other hand,
we will use Σ⊕ to denote all the monomials in the variables Σ which we will
denote by v, v′ and vi. Thus, a monomial v in the variables Σ = {a1, . . . , an}
is an expression of the form ax11 , . . . a

xn
n where each xi ≥ 1 denotes the number

of occurrences of ai in v. Note that, if xi = 0 we do not write ai. The length
of v is defined as |v| def

= x1 + . . . + xn. For instance, if Σ = {a, b} then all the
elements in Σ∗ of length 3 containing 2 a’s and 1 b are the words aab, aba and
baa, while the only element with that property in Σ⊕ is the monomial a2b.

Next we give a formal definition of the notion of nonexpansive context-free
grammar.

Definition 5.1.1 (Nonexpansive CFG). A CFG G = (V,Σ, S, R) is [4]nonex-
pansive if no derivation is of the form X ⇒∗ α0Xα1Xα2 with X ∈ V and
αi ∈ (Σ ∪ V)∗, for each i ∈ {0, . . . , 2}. Otherwise, the G is expansive.

Let us illustrate this definition with an example.

Example 5.1.2. Let G1 = ({X, Y }, {a, b}, X, R = {X → aX Y, X → aX,X →
a, Y → b Y, Y → b}) be a CFG. Since no derivation is of the form X ⇒∗
α0Xα1Xα2 with X ∈ V and αi ∈ (Σ ∪ V)∗, G1 is nonexpansive. Observe that
there exists a value k ≥ 1 such that it is possible to generate every word of G1

using a derivation sequence where the derivation sentence with the maximum
number of variables has at most k variables. For G1 the corresponding value of
k is 2.

Now consider the CFG G2 = ({X}, {a, b}, X,R = {X → aX bX,X → ε}).
Clearly, this CFG is expansive. In this particular case, there exists always a
word for which its unique parse tree is of dimension n, for every n ≥ 0. In other
words, the dimension of the set of parse trees of this grammar is unbounded.
However, this is not necessarily true for every expansive CFG, namely, there
might be a natural value k ≥ 1 such that every word of an expansive CFG
might be generated using a derivation sequence where the sentence with the
maximum number of variables has at most k variables.

J

We also extend the notion of Parikh image from words to weighted context-
free grammars. To do so recall that, given a WCFG (G,W), JGKW denotes its

semantics which is defined as the function JGKW : Σ∗ → S such that JGKW (w)
def
=

W (w).

89

5. Parikh Image of Weighted Context-Free Grammars

Definition 5.1.3 (Parikh image of a WCFG). Given a WCFG (G,W), the
Parikh image of (G,W), denoted by *G+W , is the mapping *G+W : Σ⊕ → S such
that:

*G+W (v)
def
=
∑
v=*w+
w∈Σ∗

JGKW (w) .

We denote the formal sums
∑

w∈Σ∗JGKW (w)w and
∑

v∈Σ⊕ *G+W (v) v by
JGKW and *G+W , respectively.

Definition 5.1.4 (Language and Parikh equivalence of WCFGs). Given two
WCFGs (G1,W1) and (G2,W2), (G1,W1) is language-equivalent to (G2,W2) iff

JG1KW1 = JG2KW2 ,

and (G1,W1) is Parikh-equivalent to (G2,W2) iff

*G1+W1
= *G2+W2

.

We say that a WCFG (G,W) is regular (nonexpansive or cycle-free) iff G is
regular (nonexpansive or cycle-free, respectively).

Now we are ready to define the Parikh property.

Definition 5.1.5 (Parikh property). A WCFG (G,W) satisfies the Parikh pro-
perty iff there exists a WCFG (G`,W`) such that:

1. (G`,W`) is regular, and

2. *G+W = *G`+W`
.

5.1.2 WCFGs and Algebraic Systems

Now we will establish the connection between WCFGs and algebraic systems
in commuting variables. First, let us introduce some preliminary definitions.

Given S and an alphabet Σ, a formal power series in commuting variables
is a mapping of Σ⊕ into S. S〈〈Σ⊕〉〉 denotes the set of all formal power series
in commuting variables Σ and coefficients in S. The values of a formal power
series r are denoted by (r, v) where v ∈ Σ⊕. As r is a mapping of Σ⊕ into S,
it can be written as a formal sum as r =

∑
v∈Σ⊕(r, v) v. When v = ε, we will

write the term (r, ε)ε of r simply as (r, ε). We define the support of a formal
power series as the set of monomials whose coefficient is different from 0S. The
subset of S〈〈Σ⊕〉〉 consisting of all series with a finite support is denoted by
S〈Σ⊕〉 and its elements are called polynomials. Finally, define, the operator Rk

(k ≥ 0) applied on r ∈ S〈〈Σ⊕〉〉 as Rk(r)
def
=
∑
|v|≤k

(r, v)v.

90

5.1. Introduction

Consider a WCFG (G,W) with G = (V,Σ, X1, R), V = {X1, . . . , Xn}, and
W defined over the semiring S. We associate to (G,W) the algebraic system in
commuting variables defined as follows. For each Xi ∈ V :

Xi =
∑
π∈R

π=(Xi→α)

W (π)*α+ . (5.1)

We refer to this system as the algebraic system (in commuting variables) cor-
responding to (G,W). Sometimes, we write S〈Σ⊕〉-algebraic system to indicate
that the coefficients of the system lie in S〈Σ⊕〉. Note that (5.1) can be written
as follows. For each Xi ∈ V :

Xi = pi , with pi ∈ S〈(Σ ∪ V)⊕〉 . (5.2)

A solution to (5.2) is defined as an n-tuple r = (r1, . . . , rn) of elements of
S〈〈Σ⊕〉〉 such that ri = r(pi), for i = 1, . . . , n, where r(pi) denotes the series
obtained from pi by replacing, for j = 1, . . . , n, simultaneously each occurrence
of Xj by rj. Note that, r1, the first component of r, always corresponds to
the solution for X1, the initial variable of G. The approximation sequence
σ0, σ1, . . . , σj, . . . where each σj is an n-tuple of elements of S〈Σ⊕〉 associated
to an algebraic system as (5.2) is defined as σ0 = (0S, . . . , 0S) and σj+1 =
(σj(p1), . . . , σj(pn)) for all j ≥ 0. We have that limj→∞ σ

j = σ iff, for all k ≥ 0,
there exists a natural m(k) such that Rk(σ

m(k)+j) = Rk(σ
m(k)) = Rk(σ), for all

j ≥ 0. If limj→∞ σ
j = σ, then σ is a solution of (5.2) and is referred to as the

strong solution [67, Theorem 14.1]. Note that, by definition, the strong solution
is unique whenever it exits.

Finally, if (G,W) is a regular WCFG then each pi in its corresponding alge-
braic system written as in (5.2) is a polynomial in S〈M〉, whereM denotes the
set of monomials of the form ax11 . . . axmm Xy1

1 . . . Xyn
n with ai ∈ Σ, xi, yj ∈ N, for

all i and j, and
∑n

i=1 yi ≤ 1. We call a system of this form a regular algebraic
system.

Conversely, we associate to each S〈Σ⊕〉-algebraic system S in commuting va-
riables of the form (5.2) a WCFG (G,W) over the semiring S as follows. Define
G = ({X1, . . . , Xn},Σ, X1, R) and such that π = (Xi → α) ∈ R iff (pi, α) 6= 0S.
If π ∈ R, then W (π) = (pi, α). We will refer to (G,W) as the WCFG correspon-
ding to the algebraic system S. Note that if we begin with an algebraic system
in commuting variables, then go to the corresponding WCFG and back again
to an algebraic system, then the latter coincides with the original. However, if
we begin with the WCFG, form the corresponding algebraic system and then
again the corresponding WCFG, then the latter grammar may differ from the
original.

91

5. Parikh Image of Weighted Context-Free Grammars

5.2 Sufficient Condition for the Parikh Property

Petre [77] shows that the Parikh property is not true in general. In the following
example we show a well-known WCFG (for instance, see [10, 77]) for which no
regular Parikh-equivalent WCFG exists.

Example 5.2.1. Consider the WCFG (G,W) with G = ({X}, {a}, X, {X →
aXX, X → a}) and the weight function W over (N,+, ·, 0, 1) that assigns 1 to
each production in the grammar. Note that, because the alphabet is unary, we
have that JGKW = *G+W . As W assigns 1 to each grammar rule, the weight of
each word can be interpreted as its ambiguity w.r.t. G. Then, the reader can
check that:

JGKW =
∑
n≥0

Cn a
2n+1 = 1a+ 1a3 + 2a5 + 5a7 + 14a9 + 42a11 + 132a13 + . . .

where Cn
def
= 1

n+1

(
2n
n

)
, the n-th Catalan number. We will see in Example 5.3.6

that this formal power series cannot be generated by a regular WCFG. J

Now we show that every nonexpansive WCFG over an arbitrary commuta-
tive semiring satisfies the Parikh property. The proof is rather technical and
therefore here we give a sketch of it. For a complete proof, see Section 5.6.

Theorem 5.2.2. Let (G,W) be an arbitrary WCFG. If G is nonexpansive then
(G,W) satisfies the Parikh property.

Proof. The proof is constructive. Here we give the main intuition. For
every nonexpansive WCFG (G,W), we give a 2-step construction that re-
sults in a Parikh-equivalent regular WCFG (G`,W`).

The steps are:

1. construct a new WCFG
(
G dke,W dke), where k ∈ N, language-equivalent

to (G,W); and

2. construct a regular WCFG (G`,W`) Parikh-equivalent to
(
G dke,W dke).

The idea behind the first step is to build a WCFG
(
G dke,W dke) that

contains all the information needed to define a “strategic” derivation policy.
This derivation policy is strategic in the sense that the total number of
grammar variables in all derivation sentences produced along a derivation
sequence is bounded by an affine function of k. To build

(
G dke,W dke) we

rely on the grammar construction given by Luttenberger et al. [68].
In the second step of the construction, we use

(
G dke,W dke) to build a

regular WCFG (G`,W`) that is Parikh-equivalent. Each grammar variable

92

5.2. Sufficient Condition for the Parikh Property

of (G`,W`) represents each possible sentence (without the terminals) along
a derivation sequence of

(
G dke,W dke), and each rule simulates a derivation

step of
(
G dke,W dke). Because the number of variables in the sentences is

bounded by a function of k, the number of variables and rules of (G`,W`) is
necessarily finite. This grammar relies on previous constructions proposed
by Bhattiprolu et al. [10] and Esparza et al. [32].

The converse of Theorem 5.2.2 is not true. The next counterexample illus-
trates this fact by defining an expansive WCFG for which a Parikh-equivalent
regular WCFG exists. Thus, nonexpansiveness does not provide an exact char-
acterization of the Parikh property.

Example 5.2.3. Consider the WCFG (G1,W1) where G1 = ({X1}, {a, a}, X1,
R1 = {X1 → aX1, X1 → aX1, X1 → ε}) and W1 is defined over (N,+, ·, 0, 1)
and assigns 1 to each rule in R1. First, note that (G1,W1) is regular and the
weight of each word can be interpreted as its ambiguity w.r.t. G1. Because G1

is unambiguous, the weight of each word in the language of G1 is 1. It is easy
to see that:

JG1KW1 = (a+ a)∗ =
∑
n≥0

(a+ a)n = 1ε+ 1a+ 1a+ 1aa+ 1aa+ 1aaa+ 1aaa+ . . .

Now consider the expansive WCFG (GD,WD) where GD = ({D}, {a, a},
D, RD = {D → aDaD, D → ε}) and WD is defined over N and assigns 1 to
each rule in RD. The grammar GD generates the Dyck language2 LD over
the alphabet {a, a} and it is also unambiguous. It is well-known that LD is
a deterministic context-free language (DCFL). Then the complement3 of LD,
namely {a, a}∗ \ LD, is also a DCFL, and thus admits an unambiguous4 CFG.
Define the WCFG (GD,WD), with GD = ({D,D, Y, Z}, {a, a}, D,RD), RD given
by:

D → DaY | DaZ Y → a Y | a Y | ε
D → aD aD | ε Z → DaZ | D .

and with the weight function WD defined over (N,+, ·, 0, 1) and assigning 1 to
each production in the grammar.

Finally, define (G2,W2) where G2 = ({X2, D,D, Y, Z}, {a, a}, X2, R2), R2 is
defined as R2 = {X2 → D, X2 → D} ∪ RD where W2 is defined over N and
assigns 1 to each rule in R2.

2The Dyck language is defined as the set of well-parenthesized words over the alphabet
{“(”,“)”}. For clarity, we will instead use the alphabet {a, a}.

3The class of deterministic context-free languages is closed under complementation.
4Note that every deterministic context-free languages is unambiguous (the reverse is not

true, in general).

93

5. Parikh Image of Weighted Context-Free Grammars

First, G2 is expansive because GD is expansive. Furthermore, D and D gen-
erate unambiguous context-free languages that are complementary over {a, a}.
As the weight of each word in (G2,W2) corresponds to its ambiguity, we have
that JG2KW2 = (a + a)∗. Hence JG1KW1 = JG2KW2 , and thus *G1+W1 = *G2+W2 .
Since (G1,W1) is regular, we conclude that (G2,W2) is expansive and satisfies
the Parikh property.

J

We can give a similar counterexample over a unary alphabet. This shows
that nonexpansiveness is not necessary for the Parikh property even in the unary
case.

Example 5.2.4. The idea behind this example is to use the definition of
(G2,W2) from Example 5.2.3 and replace each occurrence of the symbol a
in the rules of (G2,W2) by a. Thus, define the WCFG (G,W) where G =
({X,D,D, Y, Z}, {a}, X,R), R is given by:

X → D | D D → DaY | DaZ Z → DaZ | D ,

D → aD aD | ε Y → a Y | ε

and the weight function W is defined over (N,+, ·, 0, 1) and assigns 1 to each
production in the grammar except from the rule Y → a Y which is assigned
weight 2. Recall that *G2+W2 = (a + a)∗. Now, relying on our construction
of (G,W), we have that *G+W is the formal power series that results from
replacing each a by a in the series *G2+W2 . Thus, we obtain that *G+W =
(a + a)∗ = (2a)∗. The reader can check that the formal power series (2a)∗

corresponds to the Parikh image of the regular WCFG (G`,W`) where G` is
defined as G` = ({X}, {a}, X, {X → aX, X → ε}) and the weight function
W` is defined over (N,+, ·, 0, 1) and assigns weight 2 to the rule X → aX and
weight 1 to the rule X → ε.

J

5.3 A Decision Procedure for the Parikh Pro-

perty Over the Rationals

In this section we give a decision procedure that tells whether or not a given
WCFG with weights over the rational semiring satisfies the Parikh property.
Our procedure relies on a decidability result by Kuich and Salomaa [67, The-
orem 16.13]. It implicitly follows from this result that the Parikh property is
decidable over the rational semiring. However, their decision procedure is hard
to follow as it relies on algebraic methods beyond the scope of this dissertation.

94

5.3. A Decision Procedure for the Parikh Property Over the Rationals

This makes its implementation rather involved even for small instances. We
propose an alternative method to sidestep this problem using Groebner bases.

We start by showing that the Parikh image of a cycle-free WCFG corre-
sponds to the solution for the initial variable in its corresponding algebraic
system.

Theorem 5.3.1. Let (G,W) be a cycle-free WCFG and let S be the algebraic
system in commuting variables corresponding to (G,W). Then, the strong solu-
tion r of S exists and the first component of r corresponds to *G+W .

Proof. First, we prove that if a WCFG (G,W) defined over a commutative
semiring S is cycle-free, then the strong solution of the algebraic system in
commuting variables corresponding to (G,W) exists. Second, we show that
the first component of the strong solution corresponds to *G+W .

We give a proof by contradiction of the first statement. Thus, we prove
the following:

Let S be the algebraic system corresponding to a WCFG (G,W) and

let σ0, σ1, . . . , σj, . . . be the approximation sequence associated to S.

If lim
j→∞

σj does not exist, then (G,W) is not cycle-free.

Note that limj→∞ σ
j does not exist iff either the approximation sequence

oscillates between a finite number of states, or there exists a length k ≥ 0
such that the coefficient of some monomial v ∈ Σ⊕, with |v| ≤ k, increases
(w.r.t. the partial ordering of S) unboundedly at every step in the approx-
imation sequence. Formally, there exists k ≥ 0 such that, for every m ≥ 0,
Rk(σ

m) ≤ Rk(σ
m+j), for some j > 0, where ≤ is the partial ordering of S.

The first case cannot hold because every approximation sequence is mono-
tonic [67, Lemma 14.4]. Next we see that, if the second case holds, then
necessarily the corresponding WCFG (G,W) is not cycle-free.

To give some intuition, let us consider the following simple scenario.
Consider that the set of variables V of G contains only 1 variable, say
X, and assume that the limit of the approximation sequence of its corres-
ponding algebraic system does not exist. Intuitively, for each j ≥ 0, the
monomials occurring in the finite series σj in the approximation sequence
of the corresponding system S correspond to the monomials that can be
produced by G in at most j derivation steps, and the coefficient of each
monomial corresponds to its weight if only derivations of at most j steps
are considered. By hypothesis, there exists a length k ≥ 0 such that the
coefficient of some monomial v ∈ Σ⊕, with |v| ≤ k, increases unbound-

95

5. Parikh Image of Weighted Context-Free Grammars

edly at every step in the approximation sequence. It means that, for each
derivation sequence of m(m ≥ 1) steps generating w ∈ Σ∗ with *w+ = v,
there is another derivation sequence of l > m steps generating w′ ∈ Σ∗ with
*w′+ = v. In other words, there exist derivation sequences in G of arbitrary
length. Because the number of rules of G is finite and so is the number
of words w ∈ Σ∗ such that *w+ = v, then either G contains a rule of the
form X → X, or G contains a rule of the form X → α with α ∈ {X}+

and |α| > 1, and a rule of the form X → ε. It follows that there exists a
derivation sequence in G of the form X ⇒+ X, and thus G is not cycle-free.

The proof of the statement for every WCFG (G,W) with an arbitrary
number of variables goes in a similar fashion. By hypothesis, there exists a
length k ≥ 0 such that for some monomial v ∈ Σ⊕, with |v| ≤ k, for every
derivation sequence of m (m ≥ 1) steps generating w ∈ Σ∗ with *w+ = v,
there is another derivation sequence of l with l > m generating w′ ∈ Σ∗

with *w′+ = v. That is, there are arbitrarily large derivation sequences
in G using rules that do not add alphabet symbols. Since the number of
grammar rules of G is finite and so is the number of words w ∈ Σ∗ such
that *w+ = v, there must exist a cycle in G, i.e., a derivation sequence of
the form Xi ⇒+ Xi, where Xi is a variable of G. Then, we conclude that
G is not cycle-free.

We have shown that the strong solution r of S exists. Now we prove
that the first component of r corresponds to *G+W . First, consider S̃ as the
algebraic system in noncommuting variables corresponding to a cycle-free
(G,W) that is built as follows:

Xi =
∑
π∈R

π=(Xi→α)

W (π)α . (5.3)

Note that (5.3) now is of the form:

Xi = pi , with pi ∈ S〈(Σ ∪ V)∗〉 .

Salomaa et al. prove that, if r̃1 is the first component of the strong solution
of S̃, then r̃1(w) = JGKW (w) for every w ∈ Σ∗ when the weight functionW is
defined over (N,+, ·, 0, 1) and assigns 1 to each rule in G [82, Theorem 1.5].
In the proof they denote JGKW (w) by amb(G, w), as it corresponds to the
ambiguity of w according to G. The proof for the more general case where
W is any arbitrary weight function defined over a commutative semiring
reduces to replacing JGKW (w) by amb(G, w) and using the corresponding
semiring operations.

96

5.3. A Decision Procedure for the Parikh Property Over the Rationals

Now consider S as the algebraic system in commuting variables corres-
ponding to (G,W) and built as in (5.1) (page 91). Let r1 be the first
component of its solution. It is known that r1 and r̃1 verify the following
equality [67]. For each v ∈ Σ⊕:

r1(v) =
∑
v=*w+
w∈Σ∗

r̃1(w) .

Then for each v ∈ Σ⊕:

*G+W (v) =
∑
v=*w+
w∈Σ∗

JGKW (w) =
∑
v=*w+
w∈Σ∗

r̃1(w) = r1(v) ,

where the first equality holds by definition of *G+W .

Now we introduce the class of rational power series in commuting variables
Σ with coefficients in the semiring S, denoted by Srat〈〈Σ⊕〉〉.
Definition 5.3.2 (Rational Power Series in Commuting Variables). A formal
power series r ∈ Srat〈〈Σ⊕〉〉 iff r is the first component of the solution of a
regular algebraic system in commuting variables.

From the previous definition and Theorem 5.3.1 we can characterize the
WCFGs that satisfy the Parikh property as follows.

Lemma 5.3.3. Let (G,W) be a cycle-free WCFG. Then (G,W) satisfies the
Parikh property iff *G+W ∈ Srat〈〈Σ⊕〉〉.

Proof. Let (G,W) be a WCFG with *G+W ∈ Srat〈〈Σ⊕〉〉. Then *G+W is
the first component of the solution of a regular algebraic system S. Hence,
the WCFG (G`,W`) corresponding to S is regular and *G+W = *G`+W`

.
Now, let (G,W) be a WCFG with the Parikh property. Then there

exists a regular WCFG (G`,W`) such that *G+W = *G`+W`
. Let S be the

regular algebraic system corresponding to (G`,W`). The first component of
its solution vector is *G`+W`

, and thus it is in Srat〈〈Σ⊕〉〉. As *G+W = *G`+W`

then *G+W is also in Srat〈〈Σ⊕〉〉.

Next we observe that every WCFG (G,W) defined over a commutative ring
with the Parikh property satisfies a linear equation of a special kind. This result
directly follows from Theorem 16.4 in [67].

Theorem 5.3.4. Let (G,W) be a cycle-free WCFG with W defined over a
commutative ring S. Then (G,W) satisfies the Parikh property iff *G+W satisfies
a linear equation of the form: X = sX + t, for some s, t ∈ S〈Σ⊕〉 with (s, ε) = 0.

97

5. Parikh Image of Weighted Context-Free Grammars

Proof. The result is a consequence of Lemma 5.3.3 and Theorem 16.4
in [67]. To be precise, the latter theorem states that, if S is a ring, then
r ∈ Srat〈〈Σ⊕〉〉 iff there exist polynomials s, t ∈ S〈Σ⊕〉 such that r is the
solution of X = sX + t, with (s, ε) = 0.

It follows from the previous theorem that, given a WCFG (G,W) with W
defined over a commutative ring, if such a linear equation exists then (G,W)
satisfies the Parikh property; otherwise it does not. Now we will use a result by
Kuich et al. [67] to conclude that, if (G,W) is defined over Q then there exists an
irreducible polynomial q(X) such that q evaluates to 0 whenX = *G+W , denoted
by q(*G+W) ≡ 0. Intuitively, this polynomial contains all the information needed
to decide whether or not (G,W) has the Parikh property.

Theorem 5.3.5 (from Theorem 16.9 in [67]). Let S be the Q〈Σ⊕〉-algebraic
system in commuting variables corresponding to a cycle-free WCFG. Let r1 be
the first component of its strong solution. Then there exists an irreducible poly-
nomial q(X1) with coefficients in Q〈Σ⊕〉, and unique up to a factor in Q〈Σ⊕〉,
such that q(r1) ≡ 0.

Kuich et al. [67] show that the polynomial q is effectively computable by
means of a procedure based on the classical elimination theory. Now we develop
an alternative method using Groebner bases. Before introducing this technique,
we give some intuition on the ideas presented above by revisiting the examples
of the previous section.

Example 5.3.6. Consider the cycle-free WCFG (G,W) defined in Example 5.2.1
where the weight function W is now defined over (Q,+, ·, 0, 1) and assigns 1 to
each production in the grammar. The algebraic system S corresponding to
(G,W) is given by the equation X = aX2 + a. Let r1 be its strong solution.
Assume for now that the irreducible polynomial q(X) ∈ Q〈{a}⊕〉〈X〉 from The-
orem 5.3.5 is q(X) = aX2 − X + a (later we will give its construction using
Groebner bases). We will see later that the fact that q(X) is not linear is enough
to conclude that (G,W) does not satisfy the Parikh property (as we expected).

Note that the solution of S is r1 = 1−
√

1−4a2

2a
, which written as a series corre-

sponds to r1 =
∑

n≥0Cn a
2n+1, with Cn = 1

n+1

(
2n
n

)
the n-th Catalan number. It

is known that this formal power series cannot be written as the solution of a
linear equation with coefficients in Q〈{a}⊕〉 [10].

J

Example 5.3.7. Now we will consider the same WCFG (G2,W2) given in Ex-
ample 5.2.3 except that W2 is now defined over (Q,+, ·, 0, 1) (still, W2 assigns
1 to each production in the grammar). Note that (G2,W2) is cycle-free. The

98

5.3. A Decision Procedure for the Parikh Property Over the Rationals

grammar variable D generates all the words in the Dyck language LD over the
alphabet {a, a}, while the variable D generates {a, a}∗ \ LD. The system S
corresponding to (G2,W2) consists of the following equations:

X2 = D +D D = DaY +DaZ Z = DaZ +D .

D = aD aD + 1 Y = a Y + a Y + 1

Let σ = (r1, r2, r3, r4, r5) be its strong solution where r1 corresponds to the solu-
tion for the start variable X2. Assume for now that the irreducible polynomial
q(X2) ∈ Q〈{a, a}⊕〉〈X2〉 described by Theorem 5.3.5 is:

q(X2) = (1− (a+ a))X2 − 1 .

We observe that q is linear in X2 and can be written as:

q(X2) = (1− s)X2 − t = (1− (a+ a))X2 − 1 ,

with (s, ε) = 0. Thus, by Theorem 5.3.4, we conclude that (G2,W2) satisfies the
Parikh property, as we expected.

J

5.3.1 Groebner Bases

Now we develop the technique we will use to construct the irreducible polyno-
mial of Theorem 5.3.5: Groebner bases. A Groebner basis is a set of polynomials
in one or more variables enjoying certain properties. Given a set of polynomials
F with coefficients in a field, one can compute a Groebner basis G of F with the
property that G has the same solutions as F when interpreted as a polynomial
system of equations. Then, problems such as finding the solutions for the sys-
tem induced by F , or looking for alternative representations of polynomials in
terms of other polynomials become easier using G instead of F . One of the main
insights for using Groebner bases is that they are effectively constructable using
standard computer algebra systems, for any set of polynomials with coefficients
in a field.

We are interested in computing Groebner bases of algebraic systems in com-
muting variables corresponding to weighted context-free grammars. Given a
WCFG and its corresponding algebraic system, our goal is to obtain a system
with the same solution as the original, and such that one equation in the new
system depends only on the initial grammar variable X1. This equation will
contain all the information needed to decide whether or not the given WCFG
satisfies the Parikh property. We will not enter into the technical details of
how Groebner bases are constructed and their properties as these lie beyond
the scope of this dissertation (however, an explicit reference will be given in

99

5. Parikh Image of Weighted Context-Free Grammars

connection with each result applied). Instead, we will give a result that en-
capsulates all the preconditions and postconditions we need for our purpose
(Theorem 5.3.11). We first introduce the definitions that will appear in the
theorem.

In what follows, K will always denote a field. First we need to introduce
the notion of ideal.

Definition 5.3.8 (Ideal). Let K〈V ⊕〉 denote the ring of polynomials in varia-
bles V and with coefficients in K. A subset I ⊂ K〈V ⊕〉 is an ideal iff:

1. 0K ∈ I,

2. if f, g ∈ I then f + g ∈ I, and

3. if f ∈ I and h ∈ K〈V ⊕〉 then h · f ∈ I.

Given a set of polynomials F = {f1, . . . , fn}, we define 〈F 〉 as 〈F 〉 def
=

{
∑n

i=1 hi · fi | hi ∈ K〈V ⊕〉, fi ∈ F}. It can be shown that 〈F 〉 is an ideal [26]
and we call it the ideal generated by F . When an ideal is generated by a fi-
nite number of polynomials g1, . . . , gn ∈ K〈V ⊕〉, we say that g1, . . . , gn is a
basis of the ideal. It is known that every ideal in K〈V ⊕〉 has a basis (actually
many, but the ones we are particularly interested in are the so-called Groebner
bases) [26]. If one considers the set of polynomial equations {f = 0 | f ∈ F},
denoted by F = 0, then the set of all solutions of F = 0 is defined as
{(r1, r2, . . . , rn) ∈ Kn | f(r1, . . . , rn) ≡ 0, for all f ∈ F}. Then, given two
sets of polynomials F and G, if 〈F 〉 = 〈G〉 then the set of solutions of F = 0
coincides with the set of solutions of G = 0 [26].

To construct a Groebner basis of an ideal I, one needs to impose first a total
ordering on the monomials of variables occurring in I. This choice is significant
as different orderings lead to different Groebner bases with different properties.
We are interested in computing Groebner bases with the elimination property
for the initial variable X1, i.e., bases where at least one polynomial depends
only on X1. Hence, we will always impose the reverse lexicographic ordering
to construct Groebner bases.

Definition 5.3.9 (Reverse Lexicographic Order). Let V = {X1, . . . , Xn} be a
set of variables. Let u and v be two monomials in V ⊕. Then, u is greater than
v w.r.t. the reverse lexicographic ordering, denoted by u �revlex v, iff the first
non-zero component of the vector *u+ − *v+ is negative.

Note that Definition 5.3.9 implies an ordering of the variables: Xn �revlex
Xn−1 �revlex . . . �revlex X1.

The reason for choosing the reverse lexicographic ordering is that, in order to
compute a Groebner basis with the elimination property for the initial variable

100

5.3. A Decision Procedure for the Parikh Property Over the Rationals

X1, we need X1 to be the least monomial (with one or more variable). In
what follows, the phrase “w.r.t. the reverse lexicographic ordering” (for some
given V = {X1, . . . , Xn}) will refer to the one described in Definition 5.3.9 with
variables V , unless stated otherwise.

Fixed a total monomial ordering, we define the leading monomial (LM) of
a polynomial p as the greatest monomial in p, and we denote it by LM(p). We
define the leading term (LT) of p as the leading monomial of p together with
its coefficient, and we denote it by LT (p).

Finally, we introduce the notion of a reduced Groebner basis which allows
to define uniquely a Groebner basis of an ideal of polynomials.

Definition 5.3.10 (Reduced Groebner Basis). Let F be a set of polynomials
and G a Groebner basis of 〈F 〉. Then, G is a reduced Groebner basis of 〈F 〉 iff
for each gi ∈ G:

1. the coefficient of LT (gi) = 1, and

2. LM(gi) does not divide any term of any gj with i 6= j.

For a given set of polynomials F and monomial ordering �, there exists
exactly one reduced Groebner basis of 〈F 〉 w.r.t. � [26]. We abuse notation
and write K〈X〉 instead of K〈{X}⊕〉 to refer to the ring of polynomials in the
variable X with coefficients in K. Now we are ready to give the theorem.

Theorem 5.3.11. Let K be a field and V = {X1, . . . , Xn} a set of variables.
Let F ⊆ K〈V ⊕〉 be a set of polynomials such that the strong solution of the
system F = 0 is (r1, . . . , rn) where ri corresponds to the solution for Xi. Let G
be the reduced Groebner basis of 〈F 〉 w.r.t. the reverse lexicographic ordering.
Then the following properties are satisfied:

1. (r1, . . . , rn) is also the strong solution of the system G = 0, and

2. there is exactly one polynomial g ∈ G s.t. g ∈ K〈X1〉, and for that g we
have g(r1) ≡ 0.

Proof. Property 1. follows from the fact that G is a basis of 〈F 〉. Now we
prove property 2.

G is a Groebner basis of 〈F 〉 w.r.t. the reverse lexicographic order-
ing. Then, as a result of the Elimination Theorem [26, Theorem 3.1.2],
G∩K〈X1〉 is a Groebner basis of 〈F 〉∩K〈X1〉. Assume first that G∩K〈X1〉
contains only the zero polynomial (the constant polynomial whose coeffi-
cients are equal to 0). Then the ideal 〈F 〉 ∩K〈X1〉 also contains only the
zero polynomial. But this contradicts Theorem 5.3.5. Then G ∩ K〈X1〉
contains at least one nonzero polynomial g. Assume now that G ∩K〈X1〉

101

5. Parikh Image of Weighted Context-Free Grammars

contains two different elements g1 and g2 in K〈X1〉. W.l.o.g., let g1 be such
that LM(g1) �revlex LM(g2). Thus, LM(g1) divides (at least) the leading
term of g2. Then G is not in reduced form (contradiction). We conclude
that there is exactly one (nonzero) polynomial g ∈ G such that g ∈ K〈X1〉.
Finally, g(r1) ≡ 0 follows from 1. and the fact that g ∈ (G ∩K〈X1〉).

Now we show in Theorem 5.3.12 how to construct q using Groebner bases.
Finally, we give in Theorem 5.3.14 the main result of this section.

Theorem 5.3.12. Let S be a Q〈Σ⊕〉-algebraic system in commuting variables
corresponding to a cycle-free WCFG and r1 be the first component of its strong
solution. Then an irreducible polynomial q(X1) with coefficients in Q〈Σ⊕〉 such
that q(r1) ≡ 0 can be effectively constructed.

Proof. We begin with the first part of the algorithm. Let K be the fraction
field of Q〈Σ⊕〉, i.e., the smallest field (w.r.t. inclusion) containing Q〈Σ⊕〉.
Consider S as defined in (5.2) (page 91) where now each polynomial pi has
its coefficients in K and its variables in V , and let F ⊆ K〈V ⊕〉 be the set
of polynomials {pi | 1 ≤ i ≤ n}. Construct the reduced Groebner basis G
of F w.r.t. the reverse lexicographic ordering. Let G = {g1, . . . , gs} with
s ≥ 1. By Theorem 5.3.11, there is exactly one g ∈ G such that g ∈ K〈X1〉,
and g satisfies g(r1) ≡ 0.

We cannot conclude yet that g(X1) is the polynomial q(X1) we are
looking for since g(X1) might not be irreducible in the fraction field of
Q〈Σ⊕〉. This constitutes the second part of the algorithm which follows the
method given in [67] to obtain from g(X1) an irreducible polynomial q(X1)
such that q(r1) ≡ 0.

Compute the factorizationa of g in the fraction field of Q〈Σ⊕〉 and let
{q1(X1), . . . , qm(X1)} with m ≥ 1 be the set of all irreducible polynomials
obtained thus as factors. Because g(r1) ≡ 0, there exists an index j0 with
1 ≤ j0 ≤ m such that qj0(r1) ≡ 0 and qj(r1) 6≡ 0 for j 6= j0 and 1 ≤ j ≤ m.
Now we show how to find j0.

Using the operator Rk introduced in the beginning of Section 5.1.2, we
have that Rk(qj0(Rk(r1))) ≡ 0 for all k ≥ 0, while for each j 6= j0 there
is always an index kj such that Rkj(qj(Rkj(r1))) 6≡ 0. Then, eventually an
index j0 is always found.

Let qj0(X1) = nk

dk
Xk

1 + nk−1

dk−1
Xk−1

1 + . . . + n0

d0
with k ≥ 0, ni, di ∈ Q〈Σ⊕〉

and di 6= 0 for all i. Let lcm(d0, . . . , dk) denote the least common multiple
of d0, . . . , dk and define q(X1) = lcm(d0, . . . , dk) · qj0(X1). Now q(X1) ∈
Q〈Σ⊕〉〈X1〉 and this completes the algorithm.

aPolynomial factorizations are performed w.r.t. polynomials with coefficients in the

102

5.3. A Decision Procedure for the Parikh Property Over the Rationals

fraction field of Q〈Σ⊕〉 which is a computable field.

Remark 5.3.13. It is worth noting that, even though q(X1) is an irreducible
polynomial over K, the fraction field of Q〈Σ⊕〉, it might not be irreducible over
Q〈Σ⊕〉 since it might have a factorization consisting of a polynomial q̃(X1) ∈
Q〈Σ⊕〉〈X1〉 of the same degree and one or more constant polynomials over
Q〈Σ⊕〉, i.e., polynomials of degree zero, that are not units in Q〈Σ⊕〉. However,
since constant factors are not relevant for the result, we say that a polynomial
over Q〈Σ⊕〉 is irreducible iff either no factorization exists, or, if there is one,
then it is of the aforementioned form.

Theorem 5.3.14. Let (G,W) be a cycle-free WCFG with W defined over Q.
Then, it is decidable whether or not (G,W) verifies the Parikh property.

Proof. Let S be the Q〈Σ⊕〉-algebraic system corresponding to G and let
r1 be the first component of its strong solution. Construct the irreducible
polynomial q(X1) with coefficients in Q〈Σ⊕〉 as in Theorem 5.3.12. By
Theorem 5.3.4, we only need to check whether or not the equation q(X1) = 0
can be written as a linear equation of the form: (1− s)X1 − t = 0, with
s, t ∈ Q〈Σ⊕〉 and (s, ε) = 0.

Observe that the procedure given in Theorem 5.3.12 is complete, i.e.,
if the polynomial q obtained is not linear in X1 then there cannot exist a
polynomial q`(X1) with coefficients in Q〈Σ⊕〉 and linear in X1 such that
q`(r1) ≡ 0. If it were the case, then q` would be necessarily a factor of q,
and this contradicts the fact that q is irreducible over Q〈Σ⊕〉.

Then, if q is not linear in X1, we conclude that (G,W) does not satisfy
the Parikh property. Otherwise, q(X1) can be rewritten as q(X1) = (1 −
s)X1 − t with s, t ∈ Q〈Σ⊕〉 and (s, ε) = 0, and we conclude that (G,W)
satisfies the Parikh property.

Consider a WCFG (G,W) with r1 the first component of the solution of
its corresponding algebraic system. Observe that, if the decision procedure
returns a positive answer for (G,W) then the polynomial q(X1) constructed as
in Theorem 5.3.12 is of the form:

q(X1) = (s0 − s1)X1 − t = 0 ,

with s0 ∈ Q, s0 6= 0 and s1, t ∈ Q〈Σ⊕〉 with (s1, ε) = (t, ε) = 0. It follows that
the algebraic system consisting of the equation:

X1 =
1

s0

s1X1 +
1

s0

t , (5.4)

103

5. Parikh Image of Weighted Context-Free Grammars

has also r1 as solution. Then a regular WCFG Parikh-equivalent to (G,W) is
the one corresponding to the regular algebraic system (5.4).

Now we complete Examples 5.3.6 and 5.3.7 by following the decision proce-
dure given in Theorem 5.3.14 and giving the construction of a Parikh-equivalent
regular WCFG (if exists). Additionally, we give a third example.

The Groebner bases we show in these examples were computed using the
groebner_basis method of the open-source mathematics software system Sage-
Math.

Example 5.3.15. Consider the WCFG (G,W) given in Example 5.3.6. Recall
that its corresponding algebraic system S is given by the equation X = aX2+a.
Let r be its strong solution. Now we construct the irreducible polynomial
q(X) ∈ Q〈{a}⊕〉〈X〉 following the procedure given in Theorem 5.3.12. Let
F = {aX2 − X + a}. The reduced Groebner basis G of F w.r.t. reverse
lexicographic ordering is (trivially) G = {X2 − 1

a
X + 1}. Then the polynomial

g ∈ G such that g ∈ K〈X〉 where K is the fraction field of Q〈{a}⊕〉, and
g(r1) ≡ 0 is:

g(X) = X2 − 1

a
X + 1 .

Note that this polynomial cannot be reduced into factors in the fraction field of
Q〈{a}⊕〉. Multiplying g by a, we get q(X) = aX2−X+a ∈ Q〈{a}⊕〉〈X〉 and we
conclude that q(X) is the irreducible polynomial described by Theorem 5.3.5.
As q(X) is not linear we conclude that (G,W) does not satisfy the Parikh
property. J

Example 5.3.16. Now consider the WCFG given in Example 5.2.3 and its
corresponding algebraic system S. We construct the irreducible polynomial
q(X2) ∈ Q〈{a, a}⊕〉〈X2〉 following the procedure given in Theorem 5.3.12.
Given F , the set of polynomials in the left-hand sides of the equations of S
after moving all monomials from right to left, we construct the reduced Groeb-
ner basis G of F w.r.t. reverse lexicographic ordering. For clarity, we just show
the polynomial g ∈ G such that g ∈ K〈X2〉 where K is the fraction field of
Q〈{a, a}⊕〉, and verifies g(r1) ≡ 0:

g(X2) = X2 −
1

1− (a+ a)
.

This polynomial is linear so it is irreducible over the fraction field of Q〈{a, a}⊕〉.
Now we multiply g by (1−(a+a)), and thus obtain q(X2) = (1−(a+a))X2−1 ∈
Q〈{a, a}⊕〉〈X2〉 which is the irreducible polynomial described by Theorem 5.3.5.
Now we apply the decision procedure described in Theorem 5.3.14. We observe
that q can be written as follows:

q(X2) = (1− s)X2 − t = (1− (a+ a))X2 − 1 ,

104

http://www.sagemath.org/
http://www.sagemath.org/

5.3. A Decision Procedure for the Parikh Property Over the Rationals

with (s, ε) = 0. Thus, we conclude that (G,W) satisfies the Parikh property.
Finally, we give a regular Parikh-equivalent WCFG (G`,W`). The regular alge-
braic system:

(1− (a+ a))X2 − 1 = 0 ⇐⇒ X2 = (a+ a)X2 + 1 (5.5)

has r1 as solution. Then, the WCFG (G`,W`) corresponding to (5.5) is given
by G` = ({X2}, {a, a}, R`, X2) with R` defined as:

π1 = X2 → aX2

π2 = X2 → aX2

π3 = X2 → ε

and W` defined over (Q,+, ·, 0, 1) as W`(πi) = 1, for all i. Notice that (G`,W`)
coincides with (G1,W1) in Example 5.2.3.

J

Example 5.3.17. Let (G,W) be a WCFG with G = ({X1, X2}, {a, b}, R,X1),
R defined as:

X1 → aX2X2

X2 → bX2 | a ,

and the weight function W over (Q,+, ·, 0, 1) that assigns 1 to each production
in the grammar. The algebraic system S corresponding to (G,W) is defined as
follows: {

X1 = aX2
2

X2 = bX2 + a .

Let σ = (r1, r2) be its strong solution. Now we construct the irreducible polyno-
mial q(X1) ∈ Q〈{a, b}⊕〉〈X1〉 following the procedure given in Theorem 5.3.12.
Let F = {X1− aX2

2 , X2− bX2− a}. The reduced Groebner basis G of F w.r.t.
lexicographic ordering is:

G =

{
X1 −

a3

b2 − 2b+ 1
, X2 +

a

b− 1

}
.

Clearly, the polynomial g ∈ G such that g ∈ K〈X1〉 where K is the fraction
field of Q〈Σ⊕〉, and g(r1) ≡ 0 is:

g(X1) = X1 −
a3

b2 − 2b+ 1
.

This polynomial cannot be reduced into factors in the fraction field of Q〈Σ⊕〉.
By multiplying g by (b2 − 2b + 1) we obtain q(X1) = (b2 − 2b + 1)X1 − a3

105

5. Parikh Image of Weighted Context-Free Grammars

in Q〈Σ⊕〉〈X1〉 which is the irreducible polynomial described by Theorem 5.3.5.
Now, we apply the decision procedure described in Theorem 5.3.14. We observe
that q is linear in X1 and can be written as:

q(X1) = (1− s)X1 − t = (1− (2b− b2))X1 − a3 ,

with (s, ε) = 0. Then we conclude that (G,W) satisfies the Parikh property.
Note that this is the result expected as (G,W) is nonexpansive. Finally, we
give a regular Parikh-equivalent WCFG (G`,W`). We know that the algebraic
system:

X1 = (2b− b2)X1 + a3 (5.6)

has r1 as solution. Then the WCFG (G`,W`) corresponding to the regular
system (5.6) is given by G` = ({X1}, {a, b}, R`, X1) with R` defined as:

π1 = X1 → bX1

π2 = X1 → b2X1

π3 = X1 → a3

and W` defined over (Q,+, ·, 0, 1) as:

W`(π) =

2 if π = π1

−1 if π = π2

1 if π = π3

.

J

5.4 Related Work

The problem of extending Parikh’s Theorem to the weighted case has been
significantly considered in the literature [10, 66, 68, 77].

Petre [77] establishes that the family of power series in commuting variables
that can be generated by regular WCFGs is strictly contained in that of the
series generated by arbitrary WCFGs. In this way, he shows that Parikh’s
Theorem does not hold in the weighted case.

It is well-known that the Parikh property holds in a commutative and idem-
potent semiring [10, 66, 68]. Luttenberger et al. [68] deal with WCFGs where
the weight of a word corresponds to its ambiguity (or commutative ambiguity
when considering monomials instead of words) and they show that if a CFG is
nonexpansive then its commutative ambiguity can be expressed by a weighted
rational expression, relying on the fact that all the parse trees of a nonexpansive
CFG are of bounded dimension. We used this fact to give a Parikh-equivalent

106

5.5. Concluding Remarks

regular WCFG construction, for a given nonexpansive WCFG defined over any
commutative semiring.

Baron and Kuich [8] gave a similar characterization of nonexpansive gram-
mars using rational power series to that of Luttenberger et al. They also con-
jectured that an unambiguous WCFG is nonexpansive iff it has the Parikh
property. This conjecture appears to be false as evidenced by Example 5.2.3.

Bhattiprolu et al. [10] also show that the class of polynomially ambiguous
WCFGs over the unary alphabet satisfies the property. In the unary case, this
class is strictly contained in the class of nonexpansive grammars (a proof is
given in Section 5.6.2).

Finally, our decision procedure relies on a result by Kuich and Salomaa [67]
that decides if an algebraic series in commuting variables with coefficients in
Q is rational. To the best of our knowledge, the connection of this result to a
decidability result for the Parikh property was only implicit.

5.5 Concluding Remarks

Note that from the theoretic point of view, our decision procedure can be applied
to WCFGs over any arbitrary field. For arbitrary semirings, the decidability of
the Parikh property remains open.

Finally, Theorem 5.2.2 shows an equivalent characterization of the Parikh
property. Namely, the Parikh property holds for a WCFG (G,W) iff there ex-
ists a Parikh-equivalent nonexpansive WCFG, i.e., iff (G,W) is not inherently
expansive. It is known that inherent expansiveness is undecidable in the non-
commutative and unweighted case [47], but the question remains unsolved in
the commutative case when weights are considered.

5.6 Supplementary Proofs

5.6.1 Proof of Theorem 5.2.2

First, let us introduce some useful definitions we will use throughout this section.
Given a CFG G = (V,Σ, S, R), define the degree of G as max{|α�V | : (X → α) ∈
R} − 1, where α�V denotes the word that results from projecting α onto the
variables V . For instance, given G = ({X, Y }, {a, b}, X, {X → aXY a,X →
a, Y → b}), the degree of G is 1 since |(aXY a)�V | = |XY | = 2, |a�V | = |ε| = 0
and |b�V | = |ε| = 0.

We will use ψ to denote derivation sequences. Given a derivation sequence
ψ = α1

π1=⇒ α2
π2=⇒ . . .

πn=⇒ αn, we call the derivation step αi−1
πi=⇒ αi the i-step of

the derivation sequence. A derivation sequence ψ = α1
π1=⇒ α2

π2=⇒ . . .
πn=⇒ αn has

107

5. Parikh Image of Weighted Context-Free Grammars

index j, denoted by idx(ψ), iff for every i ∈ {1, . . . , n}, no word αi�V is longer
than j. For instance, given the CFG G defined above, the derivation sequence
X =⇒ aXY a =⇒ aaXY aY a =⇒ aaaY aY a =⇒ aaabaY a =⇒ aaababa has index 3.
Finally, given a derivation sequence ψ = α0 ⇒ . . . ⇒ αn and β0, β1 (possibly
empty) sequences of (V ∪Σ)∗, we will denote by β0 ψ β1 the derivation sequence
β0 α0 β1 ⇒ . . .⇒ β0 αn β1

Now we present the proof of Theorem 5.2.2. All the definitions, lemmas and
theorems used there will be presented below the proof.

Theorem 5.2.2. Let (G,W) be an arbitrary WCFG. If G is nonexpansive then
(G,W) satisfies the Parikh property.

Proof. The proof is constructive. For every nonexpansive WCFG (G,W),
we give a 2-step construction that results in a Parikh-equivalent regular
WCFG (G`,W`). The steps are:

1. construct a new WCFG
(
G dke,W dke), where k ∈ N, language-equivalent

to (G,W); and

2. construct a regular WCFG (G`,W`) Parikh-equivalent to
(
G dke,W dke).

The first part of the construction consists in building a new WCFG(
G dke,W dke) (Definition 5.6.1 below), so-called at-most-k-dimension WCFG

of (G,W), which is language-equivalent to the original and where grammar
variables are annotated with information about the dimension of the parse
trees that can be obtained from these variables. Let us give an intuition on
its construction.

For a given CFG G and k ∈ N (the choice of k ∈ N will be described later
on), we define G dke using the same construction as Luttenberger et al. [68].
They show how to construct, for a given CFG G, a new grammar Gdke with
the property that TGdke corresponds to the subset of TG of trees of dimension
at most k. They annotate each grammar variable with the superscript [d]
(resp. dde) to denote that only parse trees of dimension exactly d (resp.
at most d), where d ≤ k, can be obtained from these variables. When
constructing the grammar, they also consider those rules containing two or
more variables in its right-hand side and distinguish which cases yield an
increase of dimension. We recall the construction of G dke in Definition 5.6.1.

To define the weight function W dke, we assign to each rule in G dke the
same weight as its corresponding version in G (note that for those rules in
G dke with no corresponding version in G, i.e. the so-called e-rules, we assign
the identity 1A with respect to ·, where A denotes the weight domain).

Let us discuss the choice of k in
(
G dke,W dke). Luttenberger et al. show

108

5.6. Supplementary Proofs

that if G is a nonexpansive CFG then there exists an upper bound such
that the dimension of every parse tree in TG is bounded by this value [68,
Theorem 3.3]. Moreover, the bound is at most the number of grammar
variables of G. Then, for a given nonexpansive WCFG (G,W), we define
k as this bound. Because k is at most equal to the number of variables
of G, such a value is always found and consequently, the first part of the
construction always terminates.

Finally, we show that the WCFG
(
G dke,W dke) is language-equivalent

to (G,W) (Lemma 5.6.2).
In the second part of the construction, we build a regular WCFG (G`,W`)

that is Parikh-equivalent to
(
G dke,W dke). Esparza et al. show that if the

dimension of a parse tree is bounded by k then there exists a derivation
sequence for the yield of the tree whose index is bounded by an affine
function of k [32, Lemma 2.2]. We rely on this result to define a special
derivation policy on at-most-k-dimension WCFGs, for which we know the
dimension of every parse tree is bounded by k, called lowest-dimension-first
(LDF) derivations. We prove that, for every WCFG

(
G dke,W dke), the in-

dex of an LDF derivation sequence is bounded by an affine function of k
(Lemma 5.6.4). Then, each grammar variable of (G`,W`) represents each
possible sentence (without the terminals) along an LDF derivation sequence
of
(
G dke,W dke), and each grammar rule is intended to simulate an LDF

derivation step of
(
G dke,W dke). Because the number of variables in these

sentences is bounded, the sets of variables and rules of (G`,W`) are neces-
sarily finite. A formal definition of the weighted regular (G`,W`) is given
in Definition 5.6.5 . Finally we show that (G`,W`) is Parikh-equivalent to(
G dke,W dke) (Lemma 5.6.6) and this concludes the proof.

Now we build the at-most-k-dimension WCFG (G dke,W dke) for a given
WCFG (G,W) and k ∈ N. For the construction of G dke, we rely on the one
given by Luttenberger et al. [68].

Definition 5.6.1 (At-most-k-dimension WCFG). Let (G,W) be a WCFG with
G = (V,Σ, S, R) and W defined over the commutative semiring S, and let
k ∈ N. Define the at-most-k-dimension WCFG

(
G dke,W dke) with G dke =

(V dke,Σ, Sdke, R dke) of (G,W) (with w0, . . . , wn ∈ Σ∗) as follows:

• The set V dke of variables is given by

{X [d], Xdde | X ∈ V, 0 ≤ d ≤ k} .

• The set R dke of production rules is given by:

109

5. Parikh Image of Weighted Context-Free Grammars

1. Linear rules:

• r0(π)
def
= {X [0] → w0} for each π = (X → w0) ∈ R.

• r1(π)
def
= {X [d] → w0 Y

[d] w1 | 0 ≤ d ≤ k} for each π = (X →
w0 Y w1) ∈ R.

2. Non-linear rules:
For each π = (X → w0X1w1 . . . wn−1Xnwn) ∈ R

• r2(π)
def
= {X [d] → w0 Z1w1 . . . wn−1 Znwn | 1 ≤ d ≤ k, J ⊆

{1, . . . , n} with |J | = 1 : Zi = X
[d]
i if i ∈ J , and Zi = X

dd−1e
i for

all i ∈ {1, . . . , n} \ J}, and

• r3(π)
def
= {X [d] → w0 Z1w1 . . . wn−1 Znwn | 1 ≤ d ≤ k, J ⊆

{1, . . . , n} with |J | ≥ 2 : Zi = X
[d−1]
i for all i ∈ J and Zi =

X
dd−1e
i for all i ∈ {1, . . . , n} \ J}.

3. e-rules:

• r4
def
= {Xdde → X [e] | 0 ≤ e ≤ d ≤ k}.

• The weight function W dke is given by

W dke(ϕ)
def
=

W (π) if ϕ ∈ r0(π) with π = (X → w0) ∈ R
W (π) if ϕ ∈ r1(π) with π = (X → w0X1w1) ∈ R
W (π) if ϕ ∈ r2(π) ∪ r3(π) with

π = (X → w0 Z1w1, . . . , wn−1 Znwn) ∈ R
1A if ϕ ∈ r4

.

We say that a variable Z ∈ V dke is of dimension d iff either Z = Xdde, or
Z = X [d], with X ∈ V .

Lemma 5.6.2. JGKW = JG dkeKW dke.

Proof. First recall that k corresponds to the nonnegative value such that
every parse tree τ in G has dimension at most k, which we denote by
d(τ) ≤ k. We want to show that there is a bijection µ from TG dke to TG
that preserves the yield and the weight of each parse tree.

First, define T ≤kG
def
= {τ | τ ∈ TG, d(τ) ≤ k}. Luttenberger et al. [68]

prove that there is a bijection µ from TGdke to T ≤kG that preserves the yield
of parse trees. Roughly speaking, µ contracts the edges corresponding to
the e-rules and removes the superscripts from the labels of the trees. Note
that Xdde can only be rewritten to X [e] for some e ≤ d. Then, contracting
the corresponding edges cannot change the yield of the corresponding tree.

110

5.6. Supplementary Proofs

Furthermore, the rules of G dke that rewrite the variable X [d] are obtained
from the rules of G that rewrite X by only adding a superscript. Hence, by
removing these annotations again, every tree τ ∈ TG dke is mapped by µ to

a tree in T ≤kG with the same yield. The complete proof of this fact is in [68,
Lemma 3.2].

Furthermore, because G is nonexpansive, we have that T ≤kG = TG [68].
Thus, if G is nonexpansive, then µ is a bijection from TG dke to TG that
preserves the yield of parse trees.

Now we show that µ also preserves the weights of parse trees, i.e., for
each τ ∈ TG dke : W dke(τ) = W (µ(τ)). We proceed by induction on the
number of nodes of τ . In the base case, τ has one node, i.e., it has no
children. Then τ = ϕ with ϕ = X [0] → w0 and w0 ∈ Σ∗, and µ(τ) = ϕ′

with ϕ′ = X → w0. Then we have:

W dke(τ)

[τ = ϕ] = W dke(ϕ)

[Def. of W dke] = W (ϕ′)

[µ(τ) = ϕ′] = W (µ(τ)) .

For the induction step, let τ = ϕ(τ1, . . . , τn) with n ≥ 1 and ϕ be a rule
from the set ri with i ∈ {1, . . . , 5} (Definition 5.6.1). We distinguish three
cases:

• Assume ϕ ∈ r1. Then τ = ϕ(τ1) and µ(τ) = ϕ′(µ(τ1)), with ϕ′ =
X → w0X1w1 and w0, w1 ∈ Σ∗.

W dke(τ)

[Def. of weight of τ] = W dke(ϕ) ·W dke(τ1)

[Def. of W dke and induction hyp.] = W (ϕ′) ·W (µ(τ1))

[µ(τ) = ϕ′(µ(τ1))] = W (µ(τ)) .

• Assume ϕ ∈ r4. Then τ = ϕ(τ1) and µ(τ) = µ(τ1).

W dke(τ)

[τ = ϕ(τ1)] = W dke(ϕ) ·W dke(τ1)

[By induction hyp. and def. of W dke] = 1S ·W (µ(τ1))

[µ(τ) = µ(τ1)] = W (µ(τ)) .

111

5. Parikh Image of Weighted Context-Free Grammars

• Assume ϕ ∈ r2 ∪ r3. Then τ = ϕ(τ1, . . . , τn) and µ(τ) = ϕ′(µ(τ1), . . . , µ(τn))
with ϕ′ = X → w0X1w1 . . . wn−1Xnwn and w0, . . . , wn ∈ Σ∗.

W dke(τ)

[τ = ϕ(τ1, . . . , τn)] = W dke(ϕ)
n∏
i=1

W dke(τi)

[Def. of W dke and induction hyp.] = W (ϕ′)
n∏
i=1

W (µ(τi))

[µ(τ) = ϕ′(µ(τ1), . . . , µ(τn))] = W (µ(τ)) .

Finally, for each w ∈ Σ∗:

JGKW (w) =
∑

w=Y(τ)
τ∈TG

W (τ) =
∑

w=Y(τ ′)
τ ′∈TG dke

W dke(τ ′) = W dke(w) = JG dkeKW dke(w) .

Now we define a derivation policy over at-most-k-dimension WCFGs. We
call these derivations lowest-dimension-first (LDF) derivations.

Intuitively, given a parse tree τ of an at-most-k-dimension WCFG, we define
the LDF derivation sequence of τ by performing a depth-first traversal of τ
where nodes in the same level of the tree are visited from lower to greater
dimension and, if more than one node has the same dimension, then from left
to right. Recall that the dimension of a node corresponds to the dimension of
the parse tree that it roots.

Definition 5.6.3 (Lowest-dimension-first derivation). Let G dke be an at-most-
k-dimension CFG as in Definition 5.6.1. Let τ = π(τ1, . . . , τn) be a parse tree
of G dke. Define the lowest-dimension-first (LDF) derivation sequence ψ of τ
inductively as follows:

• If n = 0, then π is of the form π = X [0] → w0, and τ = π. Then, the LDF
derivation sequence of τ is:

ψ = X [0] ⇒π
ldf w0 .

• If n ≥ 1, we distinguish the following cases:

1. If π ∈ r1, i.e., π is of the form π = X [d] → w0X
[d]
1 w1 with 0 ≤ d ≤ k,

and τ = π(τ1). Then, the LDF derivation sequence of τ is:

ψ = X [d] ⇒π
ldf w0X

[d]
1 w1 ⇒ldf w0ψ1w1 ,

where ψ1 is the LDF derivation sequence of τ1.

112

5.6. Supplementary Proofs

2. If π ∈ r4, i.e., π is of the form π = Xdde → X [e] with 0 ≤ e ≤ d ≤ k,
and τ = π(τ1). Then, the LDF derivation sequence of τ is:

ψ = Xdde ⇒π
ldf X

[e] ⇒ldf ψ1 ,

where ψ1 is the LDF derivation sequence of τ1.

3. If π ∈ r2, w.l.o.g., we assume that π is of the form:

π = X [d] → w0X
[d]
1 w1X

dd−1e
2 w2 . . . wn−2X

dd−1e
n−1 wn−1X

dd−1e
n wn ,

with 1 ≤ d ≤ k, and τ = π(τ1, . . . , τn). Define, for each i ∈
{2, . . . , n}, the derivation sequence ψ̃i as follows:

ψ̃i
def
= w0X

[d]
1 w1 Y(τ2)w2 . . . Y(τi−1)wi−1X

dd−1e
i wi . . . wn−1X

dd−1e
n wn

⇒∗ldf w0X
[d]
1 w1 . . .Y(τi−1)wi−1 ψiwiX

dd−1e
i+1 wi+1 . . . wn−1X

dd−1e
n wn ,

where ψi is the LDF derivation sequence of τi. And define:

ψ̃1
def
= w0X

[d]
1 w1 Y(τ2)w2 . . . wn−1 Y(τn)wn

⇒∗ldf w0 ψ1w1 Y(τ2)w2 . . . wn−1 Y(τn)wn ,

where ψ1 is the LDF derivation sequence of τ1. Then the LDF deriva-
tion ψ of τ is:

ψ = X [d] ⇒π
ldf ψ̃2 ⇒ldf . . .⇒ldf ψ̃n ⇒ldf ψ̃1 .

4. If π ∈ r3, w.l.o.g., we assume that π is of the form:

π = X [d] → w0X
dd−1e
1 w1X

dd−1e
2 w2 . . . wn−2X

[d−1]
n−1 wn−1X

[d−1]
n wn ,

with 1 ≤ d ≤ k, and τ = π(τ1, . . . , τn). Define, for each i ∈
{1, . . . , n}, the derivation sequence ψ̃i as follows:

ψ̃i
def
= w0 Y(τ1)w1 Y(τ2)w2 . . . Y(τi−1)wi−1X

dd−1e
i wi . . . wn−1X

[d−1]
n wn

⇒∗ldf w0 Y(τ1)w1 . . .Y(τi−1)wi−1 ψiwiX
dd−1e
i+1 wi+1 . . . wn−1X

[d−1]
n wn ,

where ψi is the LDF derivation sequence of τi. Then the LDF deriva-
tion ψ of τ is:

ψ = X [d] ⇒ldf ψ̃1 ⇒ldf . . .⇒ldf ψ̃n .

Note that, given a parse tree τ of G dke, the LDF derivation sequence of τ is
uniquely defined.

Lemma 5.6.4. Let G dke be an at-most-k-dimension CFG of degree m and τ ∈
TG dke such that d(τ) ≤ k. Then, the LDF derivation sequence of τ verifies
idx(ψ) ≤ km+ 1.

113

5. Parikh Image of Weighted Context-Free Grammars

Proof. Let G dke = (V dke,Σ, Sdke, R dke). We prove the more general state-
ment:

Let m be the degree of G dke and let τ ∈ TG dke such that d(τ) ≤ d. (5.7)

Then, the LDF derivation sequence ψ of τ satisfies idx(ψ) ≤ dm+ 1.
(5.8)

The proof goes by induction on the number of nodes of τ . In the base case,
τ has one node, i.e., it has no children. Then, d = 0 and the LDF derivation
of τ is ψ = X [0] ⇒π

ldf w0 with π = (X [0] → w0) ∈ R dke. Clearly, the index
of ψ is 1.

For the induction step, assume that τ = π(τ1, . . . , τn) with n ≥ 1. We
split the proof into the following four cases:

• If π ∈ r1, then π is of the form π = X [d] → w0X
[d]
1 w1 with 0 ≤ d ≤ k,

and τ = π(τ1) with d(τ) ≤ d. By induction hypothesis, the LDF
derivation sequence ψ1 of τ1 verifies idx(ψ1) ≤ (dm+ 1). Then, the
LDF derivation of τ is:

ψ = X [d] ⇒ldf w0X
[d]
1 w1 ⇒∗ldf w0ψ1w1,

and verifies idx(ψ) ≤ dm+ 1.

• If π ∈ r4, then π is of the form π = Xdde → X [e] with 0 ≤ e ≤ d ≤ k,
and τ = π(τ1) with d(τ) ≤ d. By induction hypothesis, the LDF
derivation sequence ψ1 of τ1 s.t. idx(ψ1) ≤ (em+ 1). Then, the LDF
derivation of τ is:

ψ = Xdde ⇒ldf X
[e] ⇒∗ldf ψ1,

and verifies idx(ψ) ≤ em+ 1 ≤ dm+ 1.

• If π ∈ r2, then, w.l.o.g., π is of the form:

π = X [d] → w0X
[d]
1 w1X

dd−1e
2 w2 . . . wn−2X

dd−1e
n−1 wn−1X

dd−1e
n wn,

with 1 ≤ d ≤ k, and τ = π(τ1, . . . , τn) with d(τ) ≤ d. By induction
hypothesis, for each i ∈ {2, . . . , n}, there is a derivation ψi of τi s.t.
idx(ψi) ≤ ((d − 1)m + 1), and there is a derivation ψ1 for τ1 s.t.

114

5.6. Supplementary Proofs

idx(ψ1) ≤ dm+1. Now, define, for each i ∈ {2, . . . , n}, the derivation
sequence ψ̃i as follows:

ψ̃i
def
= w0X

[d]
1 w1 Y(τ2)w2 . . . Y(τi−1)wi−1X

dd−1e
i wi . . . wn−1X

dd−1e
n wn

⇒∗ldf w0X
[d]
1 w1 Y(τ2)w2 . . . Y(τi−1)wi−1 ψiwiX

dd−1e
i+1 wi+1 . . .

wn−1X
dd−1e
n wn .

And define:

ψ̃1
def
= w0X

[d]
1 w1 Y(τ2)w2 . . . wn−1 Y(τn)wn

⇒∗ldf w0 ψ1w1 Y(τ2)w2 . . . wn−1 Y(τn)wn .

Then, the LDF derivation ψ of τ is:

ψ = X [d] ⇒π
ldf ψ̃2 ⇒ldf . . .⇒ldf ψ̃n ⇒ldf ψ̃1 .

Observe that n− 1 ≤ m where n is the number of variables occurring
in the right-hand side of π and m is the degree of G dke. For each
i ∈ {2, . . . , n}, the index of ψ̃i is at most (d − 1)m + 1 + (n − i) ≤
dm+ 1. On the other hand, the index of ψ̃1 is at most dm+ 1. Then,
performing the derivation steps of ψ in the order shown above we
have that idx(ψ) ≤ dm+ 1.

• If π ∈ r3, then, w.l.o.g., π is of the form:

π = X [d] → w0X
dd−1e
1 w1X

dd−1e
2 w2 . . . wn−2X

[d−1]
n−1 wn−1X

[d−1]
n wn,

with 1 ≤ d ≤ k, and τ = π(τ1, . . . , τn) with d(τ) ≤ d. By induction
hypothesis, for each i ∈ {1, . . . , n}, there is a derivation ψi of τi s.t.
idx(ψi) ≤ ((d − 1)m + 1). Now, define, for each i ∈ {1, . . . , n}, the
derivation sequence ψ̃i as follows:

ψ̃i
def
= w0 Y(τ1)w1 Y(τ2)w2 . . . Y(τi−1)wi−1X

dd−1e
i wi . . . wn−1X

[d−1]
n wn

⇒∗ldf w0 Y(τ1)w1 Y(τ2)w2 . . . Y(τi−1)wi−1 ψiwiX
dd−1e
i+1 wi+1 . . .

wn−1X
[d−1]
n wn .

115

5. Parikh Image of Weighted Context-Free Grammars

Then, the LDF derivation ψ of τ is:

ψ = X [d] ⇒π
ldf ψ̃1 ⇒ldf . . .⇒ldf ψ̃n .

For each i ∈ {1, . . . , n}, the index of ψ̃i is at most (d−1)m+ 1 + (n−
i) ≤ dm+ 1. It follows that idx(ψ) ≤ dm+ 1.

Let us define the set of variables V (d) def
= {Xdde, X [d] ∈ V dke | X ∈ V },

for each 0 ≤ d ≤ k. Thus, given a derivation sentence α ∈
(
Σ ∪ V dke

)∗
of an at-most-k-dimension CFG, define ldf(α)

def
= α�Σ α�V (0) α�V (1) . . . α�V (k) and

ldfV dke(α)
def
= (ldf(α))�V dke . Using this notation, we will define a regular (G`,W`)

that is Parikh-equivalent to
(
G dke,W dke) in a similar way to Bhattiprolu et

al. [10].

Definition 5.6.5 (Regular WCFG for
(
G dke,W dke)). Let

(
G dke,W dke) be an

at-most-k-dimension WCFG with G dke = (V dke,Σ, Sdke, R dke) and degree m,
and W dke defined over the commutative semiring S. Define the WCFG (G`,W`)
with G` = (V`,Σ, S`, R`) as follows:

• Each variable in V` corresponds to a sequence α ∈
(
V dke

)km+1
where

(V dke
)km+1

denotes the set {w | w ∈ (V dke
)∗
, |w| ≤ km + 1}. We will

denote each variable by 〈α〉. Formally:

V`
def
= {〈α〉 | α ∈

(
V dke

)km+1} .

• The initial variable is defined as S`
def
= Sdke.

• For each rule π = (X → β) ∈ R dke define:

πα
def
= (〈X α〉 → β�Σ 〈ldfV dke(β)α〉) .

The set R` of rules is given by:

{πα | π = (X → β) ∈ R dke and 〈Xα〉, 〈ldfV dke(β)α〉 ∈ V`} .

• The weight function W` is given by:

W`(π
α)

def
= W dke(π) for all πα ∈ R` .

Lemma 5.6.6. *G dke+W dke = *G`+W`
.

116

5.6. Supplementary Proofs

Proof. For convenience, we will give an alternative definition of the weight
of a word using derivation sequences. Recall that we assume that the deriva-
tion policy of a grammar defines for each parse tree one unique derivation
sequence. Given a CFG G and w ∈ Σ∗, denote by derG(w) (or simply
der(w)) the subset of all derivations of G that yield to w ∈ Σ∗. Then,
define for each derivation sequence ψ = α0 ⇒π1 α1 ⇒π2 . . . ⇒πn αn of G
the weight of ψ as follows:

W (ψ)
def
=

n∏
i=1

W (πi) .

Finally, define for each w ∈ Σ∗,

W (w)
def
=

∑
ψ∈der(w)

W (ψ) .

If der(w) = ∅ then W (w)
def
= 0A.

We claim that there exists a one-to-one correspondence f that maps
each LDF derivation sequence of (G dke,W dke) into a derivation sequence of
(G`,W`) that preserves the Parikh images and the weights between deriva-
tions. Formally, there exists a one-to-one correspondence f such that for
each LDF derivation sequence ψ = X [d] ⇒∗ldf w with w ∈ Σ∗ of (G dke,W dke),
f(ψ) = 〈X [d]〉 ⇒∗ w′ with w′ ∈ Σ∗ is a derivation sequence of (G`,W`) with
the following properties:

1. *w+ = *w′+ and,

2. W dke(ψ) = W`(f(ψ)).

We now give an inductive definition of f . Along this definition we will
prove inductively that: (i) f is an injective function from LDF derivation
sequences of (G dke,W dke) to derivation sequences in (G`,W`); and (ii) prop-
erties 1. and 2. above hold.

Let ψ be an LDF derivation of (G dke,W dke).

1. If ψ is a 1-step derivation sequence then ψ = X [0] ⇒π
ldf w0 with π ∈ r0.

Then, define f(ψ)
def
= 〈X [0]〉 ⇒πε

w0.

Note that f(ψ) is a one-step derivation sequence that uses the rule
(〈X [0]〉 → w0) ∈ R`. It follows that f defines uniquely a derivation
sequence of (G`,W`) for ψ. Note that property 1. holds trivially. By

117

5. Parikh Image of Weighted Context-Free Grammars

definition of (G`,W`), we have that:

W`(f(ψ)) = W`(〈X [0]〉 → w0) = W dke(X [0] → w0) = W dke(ψ) .

2. If ψ is a n-step derivation sequence (with n > 1), then we have the
following cases:

• If ψ = X [d] ⇒π
ldf w0X

[d]
1 w1 ⇒∗ldf w0ψ

′w1 where π ∈ r1 and ψ′ =

X
[d]
1 ⇒∗ldf w with w ∈ Σ∗. Then, define f(ψ)

def
= 〈X [d]〉 ⇒πε

w0w1〈X [d]
1 〉 ⇒∗ w0w1f(ψ′).

Note that the first step in the derivation f(ψ) uses the rule

(〈X [d]〉 → w0w1〈X [d]
1 〉) ∈ R`. Relying on this and the hypothesis

of induction, f defines uniquely a derivation sequence of (G`,W`)
for ψ. By hypothesis of induction, it is easy to check that pro-
perty 1. holds. Finally, using the hypothesis of induction and
the definition of (G`,W`) we have:

W`(f(ψ)) = W`(〈X [d]〉 → w0w1〈X [d]
1 〉) ·W`(f(ψ′))

= W dke(X [d] → w0X
[d]
1 w1) ·W dke(ψ′)

= W dke(ψ) .

• If ψ = Xdde ⇒π
ldf X

[e] ⇒∗ldf ψ
′ where π ∈ r2 and ψ′ = X

[e]
1 ⇒∗ldf w

with w ∈ Σ∗. Then, define f(ψ)
def
= 〈Xdde〉 ⇒πε 〈X [e]〉 ⇒∗ f(ψ′).

Note that the first step in the derivation f(ψ) uses the rule
(〈Xdde〉 → 〈X [e]〉) ∈ R`. Relying on this and the hypothesis of
induction, f defines uniquely a derivation sequence of (G`,W`)
for ψ. By hypothesis of induction, property 1. holds trivially.
Finally, using the hypothesis of induction and the definition of
(G`,W`) we have:

W`(f(ψ)) = W`(〈Xdde〉 → 〈X [e]〉) ·W`(f(ψ′))

= W dke(Xdde → X [e]) ·W dke(ψ′)

= W dke(ψ) .

In the next (and last) case, the derivation sentence βαγ will
denote βw〈α′γ′〉 when γ = 〈γ′〉 and α = w〈α′〉 with β′, α′ ∈(
V dke

)km+1
and w ∈ Σ∗.

118

5.6. Supplementary Proofs

• Finally, assume w.l.o.g, that ψ has the form:

ψ = X [d] ⇒π
ldf w0Z1w1 . . . wn−2Zn−1wn−1Znwn

⇒∗ldf w0Z1w1 . . . wn−2Zn−1wn−1ψ
′
nwn

⇒∗ldf w0Z1w1 . . . wn−2ψ
′
n−1wn−1w̃nwn

⇒∗ldf . . .

⇒∗ldf w0w̃1w1w̃2w2 . . . wn−1w̃nwn ,

where π ∈ r2 ∪ r3 and, for each i ∈ {1, . . . , n}, ψ′i = Zi ⇒∗ldf w̃i
with w̃i ∈ Σ∗ for all i. Then, define:

f(ψ)
def
= 〈X [d]〉
⇒πε

w0w1w2 . . . wn〈ldf(Z1 . . . Zn)〉
⇒∗ w0w1w2 . . . wnf(ψ′n)〈ldf(Z1 . . . Zn−1)〉
⇒∗ w0w1w2 . . . wnw̃′nf(ψ′n−1)〈ldf(Z1 . . . Zn−2)〉
⇒∗ . . .
⇒∗ w0w1w2 . . . wnw̃′nw̃′n−1 . . . w̃′1 ,

where each w′i ∈ Σ∗ corresponds to the word generated by each
f(ψ′i) inductively. Note that the first step in the derivation f(ψ)
uses a rule of the form (X [d] → w0w1w2 . . . wn〈ldf(Z1 . . . Zn)〉)
which, according to the definition of (G`,W`), defines a rule in
R`. Relying on this and the hypothesis of induction, f defines
uniquely a derivation sequence of (G`,W`) for ψ. It is easy to
see property 1. holds since, by hypothesis of induction, each w̃′i
satisfies *w̃′i+ = *w̃i+. Finally, using the hypothesis of induction
and the definition of (G`,W`) we have:

W`(f(ψ))

= W`(X
[d] → w0w1 . . . wn〈ldf(Z1 . . . Zn)〉

n∏
i=1

W`(f(ψ′i))

= W dke(X [d] → w0Z1w1 . . . wn−1Znwn)
n∏
i=1

W dke(ψ′i)

= W dke(ψ) .

119

5. Parikh Image of Weighted Context-Free Grammars

Finally, the fact that f is a surjective function follows from its con-
struction. First, note that each rule in R` is intended to simulate an LDF
derivation step of (G dke,W dke), while each variable in V` represents a deriva-
tion sequence of (G dke,W dke). On the other hand, the reader can check
that, in each case, the definition of f intends to simulate an LDF deriva-
tion of (G dke,W dke) using the convenient definition of rules and variables
of (G`,W`). It follows that every derivation sequence of (G`,W`) is covered
by the image of f .

Relying on the definition of f and its properties, the following equalities
hold. For each v ∈ Σ⊕:

*G dke+W dke(v) =
∑
v=*w+

JG dkeKW dke(w)

=
∑
v=*w+

∑
ψ∈der(w)

W dke(ψ)

=
∑
v=*w+

∑
ψ∈der(w)

W`(f(ψ))

=†
∑
v=*w′+

∑
ψ′∈der(w′)

W`(ψ
′)

=††
∑
v=*w′+

JG`KW`
(w′)

= *G`+W`
(v),

where equality † holds since f satisfies property 2, and equality †† holds
since f is a bijection and satisfies property 1.

5.6.2 Unary Polynomially Ambiguous Grammars

Bhattiprolu et al. [10] consider the class of polynomially ambiguous WCFGs
over the unary alphabet. They show that every WCFG in this class satisfies
the Parikh property. In this section we show that in the unary case the class
of nonexpansive CFGs strictly contains the class of polynomially ambiguous
grammars.

First, let us recall the definition of polynomially ambiguous CFG. To do so,
the notion of ambiguity function of a CFG is needed. Bhattiprolu et al. [10]
define the ambiguity function of a CFG G as a function f : N 7→ N that maps
each n ≥ 0 to the number of parse trees whose yield is a word of length n. Thus,
a polynomially ambiguous grammar is defined as follows.

Definition 5.6.7 (Polynomially Ambiguous CFG). A CFG G is polynomially

120

5.6. Supplementary Proofs

ambiguous iff its ambiguity function f(n) is bounded by a polynomial p(n),
with n ≥ 0.

Second, let us give some notation as given in [10]. Given a CFG G, denote
by TG(X) (or simply T (X)) the set of all parse trees τ rooted at a rule with
head X, i.e., τ is of the form τ = (X → α)(. . .) where α ∈ (V ∪Σ∗) and X ∈ V .
A parse tree τ ∈ T (X) is an X-pumping tree iff Y(τ)�V = X. The set of all

X-pumping trees of G is T P (X)
def
= {τ ∈ T (X) | Y(τ)�V = X}. The set of all

pumping trees of G is given by T P def
= {τ ∈ T (X) | X ∈ V }. Finally, define

the concatenation of two parse trees τ1, τ2 ∈ T with Y(τ1)�V 6= ε, denoted by
τ1 ◦ τ2, by identifying the root of τ2 with the first variable of Y(τ1).

Theorem 5.6.8. Every unary polynomially ambiguous CFG is nonexpansive.

Proof. The proof goes by contradiction. Let G = (V, {a}, S, R) be a poly-
nomially ambiguous grammar and assume that G is expansive. Then, there
is a derivation sequence of the form X ⇒∗ α0Xα1Xα2 with X ∈ V and
αi ∈ (V ∪ Σ)∗. Assuming that every derivation sequence in G can pro-
duce a word of terminals (i.e., G does not contain useless rules), there
exist necessarily at least two distinct parse trees τ1 = (X → α1)(. . .) and
τ2 = (X → α2)(. . .) with Y(τ1),Y(τ2) ∈ Σ∗ (not necessarily Y(τ1) 6= Y(τ2)).

Let τ be the parse tree that corresponds to the derivation sequence
X ⇒∗ α0Xα1Xα2 and consider the pumping trees τ ◦ τ1 and τ ◦ τ2 with:

Y(τ ◦ τ1) = α0 Y(τ1)α1X α2 and Y(τ ◦ τ2) = α0 Y(τ2)α1X α2 .

Now define the X-pumping trees τ ′ and τ ′′ as follows:

τ ′ = (τ ◦ τ1) ◦ (τ ◦ τ2) and τ ′′ = (τ ◦ τ2) ◦ (τ ◦ τ1) .

Then,

Y(τ ′) = α0 Y(τ1)α1 α0 Y(τ2)α1X α2 α2 and

Y(τ ′′) = α0 Y(τ2)α1 α0 Y(τ1)α1X α2 α2 .

Because the alphabet is unary,

Y(τ ′) = Y(τ ′′) .

However, τ ′ 6= τ ′′.
We conclude the proof by using a result by Wich [91] that gives a char-

acterization of polynomially ambiguous grammars. He proves that a CFG

121

5. Parikh Image of Weighted Context-Free Grammars

G is polynomially ambiguous iff no two distinct trees τ and τ ′ of T P are
such that Y(τ) = Y(τ ′). As there exist two distinct trees in T P with the
same yield, it follows that G is not polynomially ambiguous (contradiction).

We show that the converse is not true with the following counterexample.

Example 5.6.9. In this example we use the same notation of parse trees that
we used in the proof above. Let G = ({X, Y }, {a}, X, {X → aXY, X →
aY X, X → a, Y → a}). Note that X produces derivation sequences with
at most one occurrence of itself, and Y only produces one terminal symbol.
Thus, G is nonexpansive. However, there are two distinct X-pumping trees τ1

and τ2 with Y(τ1) = Y(τ2) (Figures 5.1a and 5.1b). Then, G is not polynomially
ambiguous.

X → aXY

X → aY X

Y → a

Y → a

(a) τ1 = (X → aXY)((X → aY X)((Y → a)), (Y → a)).

X → aY X

Y → a X → aXY

Y → a

(b) τ1 = (X → aY X)((Y → a), (X → aXY)((Y → a))).

Figure 5.1: Two distinct X-pumping trees with the same yield.

J

122

6
Conclusions andFutureWork

In this dissertation we offer new language-theoretic perspectives on classical
automata constructions using equivalences over words as abstractions of formal
languages. Now we conclude this work by giving some final remarks and possible
future research directions.

First, we explore well-known automata minimization methods from the point
of view of congruences over words of finite index. While these equivalence rela-
tions allow us to define different classes of finite-state automata with important
roles in automata minimization, they also provide a way to abstract languages
and shed light on the relation between independent automata minimization
techniques.

• A view on the double-reversal method using congruences and
their left-right duality. The diagram of Figure 3.1 commutes due to
the left-right duality between the automata-based congruences through
the reverse operation. In consequence, we prove that the concatenation
of two well-known operations, reverse, determinization and reverse, yields
to an automaton that is isomorphic to the co-DFA Det`, the automata
construction based on the left automata-based congruence.

The existence of an underlying duality through the reverse operation in the
double-reversal method has been rediscovered several times before [25, 12].
In this work, we establish this duality in terms of congruences on words,
a simple language-theoretic notion that is fundamental to minimization
algorithms; and we exploit it to provide a framework of automata con-
structions that offer an alternative and clear view on this method.

One of the main advantages of this perspective is that it allows us to derive

123

6. Conclusions and Future Work

more efficient versions of this method in a systematic way by instantiat-
ing congruences that define coarser partitions than the automata-based
congruence. We give some remarks on this generalization in the next
point.

• An improved double-reversal method. We observe that, given an
NFA N , any co-DFA without empty states that is language-equivalent to
N can be determinized to obtain the minimal DFA. In other words, we
can generalize the double reversal method by replacing Det` by H`(∼`, L)
for any left congruence ∼`, where L is a given regular language. This
reveals that a potential line of improvement of this minimization method
may result from considering coarser, but effectively computable, left con-
gruences that yield to co-DFAs with at most as many states as the one
produced by Det`.

• Congruences interpreted as language abstractions allow to relate
different minimization methods.

It is when interpreting congruences as abstractions of languages, in partic-
ular, the left languages of the given NFA, when we observe that if all left
languages of the automaton are precisely represented by Nerode’s right
congruence then determinizing the automaton yields the minimal DFA
for its language. This is essentially a reformulation of the generalization
of the double-reversal method by Brzozowski and Tamm [18] using the
left-right duality between our congruences.

As a consequence, we are able to connect the double-reversal method
with the state-partition-based techniques, specifically Moore’s algorithm,
in a way that was not possible by exploiting the original formulation. In
that respect, it is interesting that Moore’s algorithm does not only build
Nerode’s equivalence at the end of the execution, but the correspondence
with the fixpoint computation of Nerode’s classes occurs at every step of
the computation.

To sum up, congruences over words have been proved crucial to characterize
the notion of regular language as well as to define its minimal deterministic
form. Now, we revisit them and show that, when interpreting them as language-
abstractions, they shed light on the common denominator between independent
minimization methods whose connection was notoriously difficult to understand.

An interesting line of work is to generalize these notions using general qua-
siorders on words, i.e., reflexive and transitive relations that may not satisfy the
symmetric property, as a way to obtain nondeterministic automata construc-
tions. In fact, we have recently showed [39] that the deterministic automata

124

constructions given in Chapter 3 can be adapted using finite quasiorders on
words to obtain residual automata, i.e., automata for which the right language
of each state defines a left quotient of the language. Note that residual au-
tomata strictly includes the deterministic ones. In that work we also address
a double-reversal-like method to obtain the minimal residual automaton for a
given regular language, a technique previously proposed by Denis et al. [28].
Furthermore, we generalize this method along the lines of the generalization of
the double-reversal method for building the minimal DFA given by Brzozowski
and Tamm [18].

Another line of future research is extending this study to tree automata
minimization methods. Tree automata are state machines that deal with tree
structures rather than words, and thus they recognize regular languages of trees.
There exists an analogue version of Nerode’s theorem for tree automata [63],
and therefore a canonical deterministic (bottom-up1) form for every regular tree
language. In consequence, similar minimization methods to the ones we have
for finite-state automata, based on partition refinement and aggregation, have
been proposed. Interestingly, Björklund and Cleophas [11] propose a double-
reversal method for tree automata. They observe that the reverse operation
will be embedded within the notion of top-down and bottom-up determinization.
However, they do not provide details of the algorithm nor a correctness proof.
Thus, exploring determinization and minimization operations on tree automata
using equivalences on trees to give a proof of correctness of Brzozowski’s method
on tree automata is an appealing direction of future work.

As opposed to the congruences we define in Chapter 3, Parikh equivalence
is an infinite-index congruence. However, it has the property of making regular
languages and context-free languages comparable. In Chapter 4, we address the
question about the conciseness of different ways to represent the Parikh image
of context-free languages: PDAs, CFGs and NFAs.

• The standard conversion procedure for PDAs into CFGs is opti-
mal in the unary case, and thus for Parikh equivalence. The fact
that our infinite family of pushdown automata accepts one single word is
a key aspect to simplify its comparison with the smallest grammar and
the smallest finite-state automaton that are language-equivalent. Our se-
mantics of PDAs computations as actrees also facilitates this comparison.
On the other hand, the fact that the family is defined over a singleton
alphabet solves directly the question for Parikh equivalence.

1There exist bottom-up and top-down tree automata. While non-deterministic top-down
tree automata have the same expressive power as non-deterministic bottom-up ones (they are
converted one into the other by simply reversing their transitions and converting final states
into initial, and viceversa), deterministic top-down tree automata are less powerful than their
bottom-up counterparts.

125

6. Conclusions and Future Work

All at once, we deduce that the standard conversion algorithm [52] for
PDAs into equivalent CFGs is optimal for unary nondeterministic PDAs,
a case that is excluded in the family defined by Goldstine et al. [45], and
for Parikh equivalence.

We also conclude that if we move from the class of unary deterministic
PDAs, for which polynomial time conversion procedures exist [23, 78], to
to either deterministic pushdown automata over alphabets of size greater
than 1 or unary nondeterministic pushdown automata, then no other
translation algorithm produces equivalent grammars with fewer variables
than the standard conversion algorithm [45, 36].

• The standard conversion algorithm can be optimized for unary
deterministic PDAs. We show that the standard conversion proce-
dure [52] can be naturally adapted to obtain a new polynomial time con-
version algorithm for unary deterministic PDAs.

There is a gap between our lower bounds and the upper bounds given
by existing constructions. Namely, we show that the smallest CFG that is
language-equivalent to each member P(n, k) needs at least Ω(n2k) variables
(Theorem 4.3.4), while the upper bound established by the standard conversion
algorithm is O(n2k+n3). It follows that the two bounds are not asymptotically
tight (see Remark 4.3.5). This gap comes from the fact that the number of stack
symbols of each PDA of the family depends on n which also corresponds to the
number of states. One possibility to avoid this divergence would be to find a
family where the number of stack symbols is independent from the number of
states (and viceversa).

Finally, Parikh’s Theorem does not extend to weighted languages. In Chap-
ter 5, we focus on characterizing the class of weighted context-free grammars
that satisfy this result.

• Inherent nonexpansiveness as a sufficient and necessary condi-
tion for the Parikh property. In our work, we show that nonexpan-
siveness is not necessary for the Parikh property, even in the unary case.

However, we observe that the Parikh property holds for a WCFG (G,W)
if and only if there exists a Parikh-equivalent nonexpansive WCFG, i.e.,
iff (G,W) is inherently nonexpansive. It is known that inherent expan-
siveness is undecidable in the noncommutative and unweighted case [47],
but the question remains open in the commutative and weighted case.

Regarding the applications, we conclude that for programs with proce-
dures and costs over a commutative ring, such as the real or the probabil-
ity semiring, with a nonexpansive structure, i.e., with no double recursion,

126

can be transformed into one without procedures, such that the weight of
Parikh-equivalent traces is preserved. Even though applications are re-
stricted to programs with such an structure, we believe the class is large
enough to allow for a variety of applications in the quantitative analysis
of asynchronous and multithreaded programs. Another alternative is to
under-approximate the verification problem by translating programs with
an expansive structure into another program with a nonexpansive struc-
ture. To do so, one option is to use the at-most-k-dimension WCFG (see
Definition 5.6.1) for some adequate k ≥ 0. Loosely speaking, this enables
the translation of the original program into one without procedures such
that the weight of every Parikh-equivalent trace of bounded dimension2

is preserved.

Finally, recall that, if the semiring of weights is idempotent, like the trop-
ical semiring, the Parikh property always holds, and thus every program
with procedures and costs can be translated into one without procedures
that preserves the costs. [10, 66, 68].

• Groebner bases simplify the decision procedure for the Parikh
property of weighted CFGs over the rationals. We focus on weighted
CFGs with weights over the rationals, a field of high interest due to the
applications of stochastic grammars. We adapt a result by Kuich and
Salomaa [67] to give a decision procedure for the Parikh property over
this field, that relies on the use of Groebner bases and produces a Parikh-
equivalent weighted grammar, if exists. The fact that Groebner bases can
be computed by means of standard computer algebra systems makes our
procedure practical.

It is worth to remark that this method can also be used to decide if a
WCFG over the integers satisfies the Parikh property [67]. More pointedly,
since Theorem 5.3.4 states that a WCFG over any ring satisfies the Parikh
property if and only if there exist two polynomials that allow to write
the grammar in the desired linear form, if the procedure does not find
such polynomials with integer coefficients, then they do not exist and the
WCFG does not satisfy the property. The naturals is not a ring, and thus
the latter result does not hold for WCFGs over this weight domain. In
fact, the decidability of the Parikh property over the natural numbers is
an interesting open question.

To wrap up, in this dissertation we propose the use of equivalences on
words as language abstractions in order to approach different questions from

2Namely, the trace corresponds to a parse tree of the original program (or CFG) of di-
mension less or equal than k.

127

6. Conclusions and Future Work

a language-theoretic point of view. More to the point, our language abstrac-
tions are regular approximations of languages. While our finite-index congru-
ences provide regular approximations (which sometimes are precise representa-
tions) of regular languages, Parikh equivalence offers regular approximations of
context-free languages.

Other powerful regular approximations of context-free languages have been
proposed in the literature. One example is the downward closure of a language,
i.e., the set of all (not necessarily contiguous) subwords of its members. It is
well-known that the downward closure of any language over a given alphabet is
regular [50], and concretely, for the class of context-free languages there exist
finite-state automata constructions for this over approximation [86, 92].

An appealing direction of future work is to use our congruence-based au-
tomata constructions to define finite-state automata for the downward closure
of context-free languages, or for regular approximations that lie between the
context-free language and its downward closure. What is specially challeng-
ing about this question is providing a finite-index “pushdown-automata-based”
congruence. While our automata-based congruences are of finite index relying
on the fact that NFAs define only finitely many possible configurations, this is
not the case for PDAs.

Finally, another interesting question is to study efficient ways to translate
PDAs into CFGs that preserve the downward closure, in a similar way as we
did for Parikh equivalence.

128

Funding Acknowledgments

This research was partially supported by:

• BES-2016-077136 grant from the Spanish Ministry of Economy, Industry
and Competitiveness (MINECO),

• project No. TIN2015-71819-P, RISCO - RIgorous analysis of Sophisti-
cated COncurrent and distributed systems from the Spanish Ministry of
Economy, Industry and Competitiveness (MINECO), and

• project No. PGC2018-102210-B-I00, BOSCO, from the Spanish Ministry
of Science, Innovation and Universities (MCIU).

129

130

Bibliography

[1] J. Adámek, F. Bonchi, M. Hülsbusch, B. König, S. Milius, and A. Silva. A
coalgebraic perspective on minimization and determinization. In FoSSaCS,
volume 7213 of Lecture Notes in Computer Science, pages 58–73. Springer,
2012.

[2] C. Allauzen and M. Mohri. Efficient algorithms for testing the twins pro-
perty. Journal of Automata, Languages and Combinatorics, 8(2):117–144,
2003.

[3] D. Angluin. Learning regular sets from queries and counterexamples. Inf.
Comput., 75(2):87–106, 1987.

[4] S. Bader, S. Hölldobler, and A. Scalzitti. Semiring artificial neural networks
and weighted automata. and an application to digital image encoding. In
KI, volume 3238 of Lecture Notes in Computer Science, pages 281–294.
Springer, 2004.

[5] C. Baier, N. Bertrand, and M. Größer. Probabilistic automata over infinite
words: Expressiveness, efficiency, and decidability. In DCFS, volume 3 of
EPTCS, pages 3–16, 2009.

[6] C. Baier and J. Katoen. Principles of model checking. MIT Press, 2008.

[7] B. Balle and M. Mohri. Learning weighted automata. In CAI, volume 9270
of Lecture Notes in Computer Science, pages 1–21. Springer, 2015.

[8] G. Baron and W. Kuich. The characterization of nonexpansive grammars
by rational power series. Information and Control, 48(2):109–118, 1981.

[9] J. Berstel, L. Boasson, O. Carton, and I. Fagnot. Minimization of au-
tomata, 2010.

131

[10] V. Bhattiprolu, S. Gordon, and M. Viswanathan. Extending Parikh’s theo-
rem to weighted and probabilistic context-free grammars. In QEST, volume
10503 of Lecture Notes in Computer Science, pages 3–19. Springer, 2017.

[11] J. Björklund and L. Cleophas. A taxonomy of minimisation algorithms for
deterministic tree automata. J. UCS, 22(2):180–196, 2016.

[12] F. Bonchi, M. M. Bonsangue, H. H. Hansen, P. Panangaden, J. J. M. M.
Rutten, and A. Silva. Algebra-coalgebra duality in Brzozowski’s minimiza-
tion algorithm. ACM Trans. Comput. Log., 15(1):3:1–3:29, 2014.

[13] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown
automata: Application to model-checking. In CONCUR, volume 1243 of
Lecture Notes in Computer Science, pages 135–150. Springer, 1997.

[14] A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static
analysis of concurrent programs with procedures. In POPL, pages 62–73.
ACM, 2003.

[15] T. Brázdil, J. Esparza, S. Kiefer, and A. Kucera. Analyzing probabilistic
pushdown automata. Formal Methods in System Design, 43(2):124–163,
2013.

[16] J. A. Brzozowski. Canonical regular expressions and minimal state graphs
for definite events. Mathematical Theory of Automata, 12(6):529–561, 1962.

[17] J. A. Brzozowski and H. Tamm. Theory of átomata. In Developments
in Language Theory, volume 6795 of Lecture Notes in Computer Science,
pages 105–116. Springer, 2011.

[18] J. A. Brzozowski and H. Tamm. Theory of átomata. Theor. Comput. Sci.,
539:13–27, 2014.

[19] J. R. Büchi. Finite Automata, their Algebras and Grammars - Towards a
Theory of Formal Expressions. Springer, 1989.

[20] J. Champarnaud, A. Khorsi, and T. Paranthoën. Split and join for mini-
mizing: Brzozowski’s algorithm. In Stringology, pages 96–104. Department
of Computer Science and Engineering, Faculty of Electrical Engineering,
Czech Technical University, 2002.

[21] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai,
and A. Shelat. The smallest grammar problem. IEEE Trans. Inf. Theory,
51(7):2554–2576, 2005.

132

[22] K. Chatterjee, L. Doyen, and T. A. Henzinger. Quantitative languages. In
CSL, volume 5213 of Lecture Notes in Computer Science, pages 385–400.
Springer, 2008.

[23] D. Chistikov and R. Majumdar. Unary pushdown automata and straight-
line programs. In ICALP (2), volume 8573 of Lecture Notes in Computer
Science, pages 146–157. Springer, 2014.

[24] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, editors. Handbook
of Model Checking. Springer, 2018.

[25] B. Courcelle, D. Niwinski, and A. Podelski. A geometrical view of the
determinization and minimization of finite-state automata. Math. Syst.
Theory, 24(2):117–146, 1991.

[26] D. A. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms - an
introduction to computational algebraic geometry and commutative algebra
(2. ed.). Undergraduate texts in mathematics. Springer, 1997.

[27] A. de Luca and S. Varricchio. Finiteness and Regularity in Semigroups
and Formal Languages. Springer Publishing Company, Incorporated, 1st
edition, 2011.

[28] F. Denis, A. Lemay, and A. Terlutte. Residual finite state automata. Fun-
dam. Inform., 51(4):339–368, 2002.

[29] M. Droste and P. Gastin. Weighted automata and weighted logics. In
ICALP, volume 3580 of Lecture Notes in Computer Science, pages 513–
525. Springer, 2005.

[30] M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata.
Springer Publishing Company, Incorporated, 1st edition, 2009.

[31] J. Esparza. Petri nets, commutative context-free grammars, and basic
parallel processes. Fundam. Inform., 31(1):13–25, 1997.

[32] J. Esparza, P. Ganty, S. Kiefer, and M. Luttenberger. Parikh’s theorem: A
simple and direct automaton construction. Inf. Process. Lett., 111(12):614–
619, 2011.

[33] J. Esparza, M. Luttenberger, and M. Schlund. A brief history of Strahler
numbers. In LATA, volume 8370 of Lecture Notes in Computer Science,
pages 1–13. Springer, 2014.

133

[34] J. Esparza, P. Rossmanith, and S. Schwoon. A uniform framework for
problems on context-free grammars. Bulletin of the EATCS, 72:169–177,
2000.

[35] A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model
checking pushdown systems. In INFINITY, volume 9 of Electronic Notes
in theoretic Computer Science, pages 27–37. Elsevier, 1997.

[36] P. Ganty and E. Gutiérrez. Parikh image of pushdown automata. In
FCT, volume 10472 of Lecture Notes in Computer Science, pages 271–283.
Springer, 2017.

[37] P. Ganty and E. Gutiérrez. The Parikh property for weighted context-free
grammars. In FSTTCS, volume 122 of LIPIcs, pages 32:1–32:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[38] P. Ganty, E. Gutiérrez, and P. Valero. A congruence-based perspective on
automata minimization algorithms. In MFCS, volume 138 of LIPIcs, pages
77:1–77:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[39] P. Ganty, E. Gutiérrez, and P. Valero. A quasiorder-based perspective on
residual automata. In MFCS, volume 170 of LIPIcs, pages 40:1–40:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[40] P. Ganty and R. Majumdar. Algorithmic verification of asynchronous pro-
grams. ACM Trans. Program. Lang. Syst., 34(1):6:1–6:48, 2012.

[41] P. Ganty, R. Majumdar, and B. Monmege. Bounded underapproximations.
Formal Methods Syst. Des., 40(2):206–231, 2012.

[42] P. Ganty and D. Valput. Bounded-oscillation pushdown automata. In
GandALF, volume 226 of EPTCS, pages 178–197, 2016.

[43] P. Garćıa, D. López, and M. Vázquez de Parga. DFA minimization: Double
reversal versus split minimization algorithms. Theor. Comput. Sci., 583:78–
85, 2015.

[44] E. M. Gold. Complexity of automaton identification from given data. In-
formation and Control, 37(3):302–320, 1978.

[45] J. Goldstine, J. K. Price, and D. Wotschke. A pushdown automaton or a
context-free grammar - which is more economical? Theor. Comput. Sci.,
18:33–40, 1982.

134

[46] S. Göller, R. Mayr, and A. W. To. On the computational complexity of
verifying one-counter processes. In LICS, pages 235–244. IEEE Computer
Society, 2009.

[47] J. Gruska. A few remarks on the index of context-free grammars and
languages. Information and Control, 19(3):216–223, 1971.

[48] E. Gutiérrez, T. Okudono, M. Waga, and I. Hasuo. Genetic algorithm
for the weight maximization problem on weighted automata. In GECCO,
pages 699–707. ACM, 2020.

[49] U. Hafner, J. Albert, S. Frank, and M. Unger. Weighted finite automata for
video compression. IEEE Journal on Selected Areas in Communications,
16(1):108–119, 1998.

[50] L. H. Haines. On free monoids partially ordered by embedding. Journal of
Combinatorial Theory, 6(1):94 – 98, 1969.

[51] J. E. Hopcroft. An n log n algorithm for minimizing states in a finite
automaton. In Theory of machines and computations, pages 189–196. El-
sevier, 1971.

[52] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation, 3rd Edition. Pearson international
edition. Addison-Wesley, 2007.

[53] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 1979.

[54] D. T. Huynh. The complexity of semilinear sets. In ICALP, volume 85 of
Lecture Notes in Computer Science, pages 324–337. Springer, 1980.

[55] D. T. Huynh. Deciding the inequivalence of context-free grammars with 1-
letter terminal alphabet is Σ2

p-complete. Theor. Comput. Sci., 33:305–326,
1984.

[56] D. T. Huynh. The complexity of equivalence problems for commutative
grammars. Information and Control, 66(1/2):103–121, 1985.

[57] S. Iván. Complexity of atoms, combinatorially. Inf. Process. Lett.,
116(5):356–360, 2016.

[58] J. Kari. Image processing using finite automata. In Recent Advances in
Formal Languages and Applications, volume 25 of Studies in Computational
Intelligence, pages 171–208. Springer, 2006.

135

[59] B. Khoussainov and A. Nerode. Automata Theory and Its Applications.
Birkhauser Boston, Inc., Secaucus, NJ, USA, 2001.

[60] J. C. Kieffer and E. Yang. Grammar-based codes: A new class of universal
lossless source codes. IEEE Trans. Inf. Theory, 46(3):737–754, 2000.

[61] B. Knudsen and J. Hein. Pfold: RNA secondary structure prediction using
stochastic context-free grammars. Nucleic Acids Research, 31(13):3423–
3428, 2003.

[62] O. Kolak, W. J. Byrne, and P. Resnik. A generative probabilistic OCR
model for NLP applications. In HLT-NAACL. The Association for Com-
putational Linguistics, 2003.

[63] D. Kozen. On the Myhill-nerode theorem theorem for trees. Bulletin of
the EATCS, 47:170–173, 1992.

[64] D. Krob. The equality problem for rational series with multiplicities in
the tropical semiring is undecidable. International Journal of Algebra and
Computation, 04(03):405–425, 1994.

[65] D. Krob. Some consequences of a Fatou property of the tropical semiring.
Journal of Pure and Applied Algebra, 93(3):231 – 249, 1994.

[66] W. Kuich. The Kleene and the Parikh theorem in complete semirings. In
ICALP, volume 267 of Lecture Notes in Computer Science, pages 212–225.
Springer, 1987.

[67] W. Kuich and A. Salomaa. Semirings, Automata, Languages, volume 5 of
EATCS Monographs on theoretic Computer Science. Springer, 1986.

[68] M. Luttenberger and M. Schlund. Convergence of Newton’s method over
commutative semirings. Inf. Comput., 246:43–61, 2016.

[69] R. Löhr. La máquina de ajedrez. Ćırculo de Lectores, 2007.

[70] C. D. Manning and H. Schütze. Foundations of statistical natural language
processing. MIT Press, 2001.

[71] M. Mohri. Finite-state transducers in language and speech processing.
Computational Linguistics, 23(2):269–311, 1997.

[72] M. Mohri and M. Riley. Weighted determinization and minimization for
large vocabulary speech recognition. In EUROSPEECH. ISCA, 1997.

136

[73] E. F. Moore. Gedanken-experiments on sequential machines. Automata
studies, 23(1):60–60, 1956.

[74] C. G. Nevill-Manning and I. H. Witten. Identifying hierarchical structure
in sequences: A linear-time algorithm. J. Artif. Intell. Res., 7:67–82, 1997.

[75] T. Okudono, M. Waga, T. Sekiyama, and I. Hasuo. Weighted automata
extraction from recurrent neural networks via regression on state spaces.
AAAI 2020, to appear, CoRR abs/1904.02931, 2019.

[76] R. Parikh. On context-free languages. J. ACM, 13(4):570–581, 1966.

[77] I. Petre. Parikh’s theorem does not hold for multiplicities. Journal of
Automata, Languages and Combinatorics, 4(1):17–30, 1999.

[78] G. Pighizzini. Deterministic pushdown automata and unary languages.
Int. J. Found. Comput. Sci., 20(4):629–645, 2009.

[79] A. Rajasekaran, J. O. Shallit, and T. Smith. Additive number theory via
automata theory. Theory Comput. Syst., 64(3):542–567, 2020.

[80] T. W. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown
systems and their application to interprocedural dataflow analysis. Sci.
Comput. Program., 58(1-2):206–263, 2005.

[81] J. Sakarovitch. Elements of Automata Theory. Cambridge University Press,
2009.

[82] A. Salomaa and M. Soittola. Automata-Theoretic Aspects of Formal Power
Series. Texts and Monographs in Computer Science. Springer, 1978.

[83] M. P. Schützenberger. On the definition of a family of automata. Infor-
mation and Control, 4(2-3):245–270, 1961.

[84] K. Sen and M. Viswanathan. Model checking multithreaded programs with
asynchronous atomic methods. In CAV, volume 4144 of Lecture Notes in
Computer Science, pages 300–314. Springer, 2006.

[85] N. Sharkey. The programmable robot from Ancient Greece. New Scientist,
2611, 2017.

[86] J. van Leeuwen. Effective constructions in well-partially-ordered free
monoids. Discret. Math., 21(3):237–252, 1978.

137

[87] M. Vázquez de Parga, P. Garćıa, and D. López. A polynomial double
reversal minimization algorithm for deterministic finite automata. Theor.
Comput. Sci., 487:17–22, 2013.

[88] K. N. Verma, H. Seidl, and T. Schwentick. On the complexity of equa-
tional Horn clauses. In CADE, volume 3632 of Lecture Notes in Computer
Science, pages 337–352. Springer, 2005.

[89] F. M. Waltz. Image Processing Using Finite-State Machines, pages 871–
902. Springer London, London, 2012.

[90] G. Weiss, Y. Goldberg, and E. Yahav. Extracting automata from recurrent
neural networks using queries and counterexamples. In ICML, volume 80
of Proceedings of Machine Learning Research, pages 5244–5253. PMLR,
2018.

[91] K. Wich. Exponential ambiguity of context-free grammars. In Develop-
ments in Language Theory, pages 125–138. World Scientific, 1999.

[92] G. Zetzsche. An approach to computing downward closures. In ICALP
(2), volume 9135 of Lecture Notes in Computer Science, pages 440–451.
Springer, 2015.

138

Acronyms

2-1-NF 2-1 normal form 82
CFG context-free grammar 3, 25, 70, 89, 125
CFL context-free language 3
co-DFA co-deterministic finite-state automaton 13, 22, 36, 123
DCFL deterministic context-free language 25, 93
DFA deterministic finite-state automaton 7, 21, 35, 124
DPDA deterministic pushdown automaton 24, 70
ID instantaneous description 23, 71
LDF lowest-dimension-first 109, 112
LIFO last in, first out 3
LM leading monomial 101
LT leading term 101
NFA (nondeterministic) finite-state automaton 3, 20, 35, 70, 124
PDA (nondeterministic) pushdown automaton 3, 23, 70, 125
RNA ribonucleic acid 5
UDPDA unary deterministic pushdown automaton 79
WCFG weighted context-free grammar 4, 29, 88, 126
WFA weighted finite-state automaton 4
WPDA weighted pushdown automaton 4
XML extensible markup language 5

139

	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Research Questions
	1.4 Contributions of This Thesis
	1.4.1 A Perspective Through Congruences
	1.4.2 A Perspective Through Parikh Equivalence
	1.4.3 Parikh Equivalence in The Weighted Case

	1.5 Thesis Structure

	2 Preliminaries
	2.1 Alphabets, Words and Languages
	2.2 Semirings
	2.3 Automata
	2.4 Grammars
	2.4.1 Weighted case

	2.5 Equivalence Relations
	2.5.1 Congruences
	2.5.2 Parikh Equivalence

	3 Finite Automata Constructions Based on Congruences
	3.1 Introduction
	3.1.1 Notation

	3.2 Automata Constructions From Congruences
	3.3 Language-Based Congruences and Their Approximation Using NFAs
	3.3.1 Automata Constructions

	3.4 Congruences as Language Abstractions
	3.5 A Congruence-Based Perspective on Known Algorithms
	3.5.1 Double-Reversal Method
	3.5.2 Simulation-Based Double-Reversal Method
	3.5.3 Generalization of the Double-Reversal Method
	3.5.4 Moore's Algorithm

	3.6 Related Work
	3.7 Concluding Remarks
	3.8 Supplementary Proofs

	4 Parikh Image of Pushdown Automata
	4.1 Introduction
	4.1.1 Notation
	4.1.2 Disassembly and Assembly of Quasi-runs

	4.2 A Tree-Based Semantics for Pushdown
	4.3 Parikh-Equivalent Context-Free Grammars
	4.3.1 The Family P(n,k) of PDAs
	4.3.2 The Case of Unary Deterministic Pushdown

	4.4 Parikh-Equivalent Finite-State Automata
	4.5 Supplementary Proofs

	5 Parikh Image of Weighted Context-Free Grammars
	5.1 Introduction
	5.1.1 Notation and Definitions
	5.1.2 WCFGs and Algebraic Systems

	5.2 Sufficient Condition for the Parikh Property
	5.3 A Decision Procedure for the Parikh Property Over the Rationals
	5.3.1 Groebner Bases

	5.4 Related Work
	5.5 Concluding Remarks
	5.6 Supplementary Proofs
	5.6.1 Proof of Theorem 5.2.2
	5.6.2 Unary Polynomially Ambiguous Grammars

	6 Conclusions and Future Work

